Create a new ClassicMcts, which is split into two files
This commit is contained in:
@@ -10,8 +10,11 @@ from stockfish import Stockfish
|
||||
from chesspp.mcts.baysian_mcts import BayesianMcts
|
||||
from chesspp.mcts.classic_mcts import ClassicMcts
|
||||
from chesspp.i_strategy import IStrategy
|
||||
|
||||
from typing import Dict
|
||||
|
||||
from chesspp.mcts.classic_mcts_v2 import ClassicMctsV2
|
||||
|
||||
|
||||
class Limit:
|
||||
""" Class to determine when to stop searching for moves """
|
||||
@@ -156,6 +159,31 @@ class ClassicMctsEngine(Engine):
|
||||
return chess.engine.PlayResult(move=best_move, ponder=None)
|
||||
|
||||
|
||||
class ClassicMctsEngineV2(Engine):
|
||||
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
|
||||
super().__init__(board, color, strategy)
|
||||
self.node_counts = []
|
||||
|
||||
@staticmethod
|
||||
def get_name() -> str:
|
||||
return "ClassicMctsEngine V2"
|
||||
|
||||
def play(self, board: chess.Board, limit: Limit) -> chess.engine.PlayResult:
|
||||
mcts = ClassicMctsV2(board, self.color, self.strategy)
|
||||
node_count = 0
|
||||
|
||||
def do():
|
||||
nonlocal node_count
|
||||
mcts.build_tree(1)
|
||||
node_count += 1
|
||||
|
||||
limit.run(do)
|
||||
self.node_counts.append(node_count)
|
||||
best_move = max(mcts.root.children, key=lambda x: x.score).move if board.turn == chess.WHITE else (
|
||||
min(mcts.root.children, key=lambda x: x.score).move)
|
||||
return chess.engine.PlayResult(move=best_move, ponder=None)
|
||||
|
||||
|
||||
class RandomEngine(Engine):
|
||||
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
|
||||
super().__init__(board, color, strategy)
|
||||
@@ -170,7 +198,8 @@ class RandomEngine(Engine):
|
||||
|
||||
|
||||
class StockFishEngine(Engine):
|
||||
def __init__(self, board: chess.Board, color: chess, stockfish_elo: int, path="../stockfish/stockfish-ubuntu-x86-64-avx2"):
|
||||
def __init__(self, board: chess.Board, color: chess, stockfish_elo: int,
|
||||
path="../stockfish/stockfish-ubuntu-x86-64-avx2"):
|
||||
super().__init__(board, color, None)
|
||||
self.stockfish = Stockfish(path)
|
||||
self.stockfish.set_elo_rating(stockfish_elo)
|
||||
|
||||
@@ -16,6 +16,7 @@ class EngineEnum(Enum):
|
||||
Stockfish = 2
|
||||
Lc0 = 3
|
||||
Random = 4
|
||||
ClassicMctsV2 = 5
|
||||
|
||||
|
||||
class StrategyEnum(Enum):
|
||||
@@ -47,6 +48,9 @@ class EngineFactory:
|
||||
case EngineEnum.ClassicMcts:
|
||||
return EngineFactory.classic_mcts(color, strategy)
|
||||
|
||||
case EngineEnum.ClassicMctsV2:
|
||||
return EngineFactory.classic_mcts_v2(color, strategy)
|
||||
|
||||
case EngineEnum.BayesianMcts:
|
||||
return EngineFactory.bayesian_mcts(color, strategy)
|
||||
|
||||
@@ -72,6 +76,10 @@ class EngineFactory:
|
||||
def classic_mcts(color: chess.Color, strategy: IStrategy) -> Engine:
|
||||
return ClassicMctsEngine(chess.Board(), color, strategy)
|
||||
|
||||
@staticmethod
|
||||
def classic_mcts_v2(color: chess.Color, strategy: IStrategy, board: chess.Board | None = chess.Board()) -> Engine:
|
||||
return ClassicMctsEngineV2(board, color, strategy)
|
||||
|
||||
@staticmethod
|
||||
def _get_random_strategy(rollout_depth: int) -> IStrategy:
|
||||
return RandomStrategy(random.Random(), rollout_depth)
|
||||
@@ -91,4 +99,3 @@ class EngineFactory:
|
||||
@staticmethod
|
||||
def _get_pesto_strategy(rollout_depth: int) -> IStrategy:
|
||||
return PestoStrategy(rollout_depth)
|
||||
|
||||
|
||||
97
chesspp/mcts/classic_mcts_node_v2.py
Normal file
97
chesspp/mcts/classic_mcts_node_v2.py
Normal file
@@ -0,0 +1,97 @@
|
||||
import math
|
||||
import random
|
||||
|
||||
import chess
|
||||
import numpy as np
|
||||
|
||||
from chesspp.i_strategy import IStrategy
|
||||
|
||||
|
||||
class ClassicMctsNodeV2:
|
||||
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy, parent=None, move: chess.Move | None = None,
|
||||
random_state: int | None = None, depth: int = 0):
|
||||
self.random = random.Random(random_state)
|
||||
self.board = board
|
||||
self.color = color
|
||||
self.strategy = strategy
|
||||
self.parent = parent
|
||||
self.move = move
|
||||
self.children = []
|
||||
self.visits = 0
|
||||
self.legal_moves = list(board.legal_moves)
|
||||
self.untried_actions = self.legal_moves
|
||||
self.score = 0
|
||||
self.depth = depth
|
||||
|
||||
def _expand(self) -> 'ClassicMctsNodeV2':
|
||||
"""
|
||||
Expands the node, i.e., choose an action and apply it to the board
|
||||
:return:
|
||||
"""
|
||||
move = self.random.choice(self.untried_actions)
|
||||
self.untried_actions.remove(move)
|
||||
next_board = self.board.copy()
|
||||
next_board.push(move)
|
||||
child_node = ClassicMctsNodeV2(next_board, color=not self.color, strategy=self.strategy, parent=self, move=move, depth=self.depth+1)
|
||||
self.children.append(child_node)
|
||||
return child_node
|
||||
|
||||
def _rollout(self, rollout_depth: int = 4) -> int:
|
||||
"""
|
||||
Rolls out the node by simulating a game for a given depth.
|
||||
Sometimes this step is called 'simulation' or 'playout'.
|
||||
:return: the score of the rolled out game
|
||||
"""
|
||||
copied_board = self.board.copy()
|
||||
steps = self.depth
|
||||
for i in range(rollout_depth):
|
||||
if copied_board.is_game_over():
|
||||
break
|
||||
|
||||
m = self.strategy.pick_next_move(copied_board)
|
||||
copied_board.push(m)
|
||||
steps += 1
|
||||
|
||||
steps = max(2, steps)
|
||||
return int(self.strategy.analyze_board(copied_board) / math.log2(steps))
|
||||
|
||||
def _backpropagate(self, score: float) -> None:
|
||||
"""
|
||||
Backpropagates the results of the rollout
|
||||
:param score:
|
||||
:return:
|
||||
"""
|
||||
self.visits += 1
|
||||
# TODO: maybe use score + num of moves together (a win in 1 move is better than a win in 20 moves)
|
||||
self.score += score
|
||||
if self.parent:
|
||||
self.parent._backpropagate(score)
|
||||
|
||||
def is_fully_expanded(self) -> bool:
|
||||
return len(self.untried_actions) == 0
|
||||
|
||||
def _best_child(self) -> 'ClassicMctsNodeV2':
|
||||
"""
|
||||
Picks the best child according to our policy
|
||||
:return: the best child
|
||||
"""
|
||||
# NOTE: maybe clamp the score between [-1, +1] instead of [-inf, +inf]
|
||||
choices_weights = [(c.score / c.visits) + np.sqrt(((2 * np.log(self.visits)) / c.visits))
|
||||
for c in self.children]
|
||||
best_child_index = np.argmax(choices_weights) if self.color == chess.WHITE else np.argmin(choices_weights)
|
||||
return self.children[best_child_index]
|
||||
|
||||
def _select_leaf(self) -> 'ClassicMctsNodeV2':
|
||||
"""
|
||||
Selects a leaf node.
|
||||
If the node is not expanded is will be expanded.
|
||||
:return: Leaf node
|
||||
"""
|
||||
current_node = self
|
||||
while not current_node.board.is_game_over():
|
||||
if not current_node.is_fully_expanded():
|
||||
return current_node._expand()
|
||||
else:
|
||||
current_node = current_node._best_child()
|
||||
|
||||
return current_node
|
||||
24
chesspp/mcts/classic_mcts_v2.py
Normal file
24
chesspp/mcts/classic_mcts_v2.py
Normal file
@@ -0,0 +1,24 @@
|
||||
import chess
|
||||
from chesspp.i_strategy import IStrategy
|
||||
from chesspp.mcts.classic_mcts_node_v2 import ClassicMctsNodeV2
|
||||
|
||||
|
||||
class ClassicMctsV2:
|
||||
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
|
||||
self.board = board
|
||||
self.color = color
|
||||
self.strategy = strategy
|
||||
self.root = ClassicMctsNodeV2(board, color, strategy)
|
||||
|
||||
def build_tree(self, samples: int = 1000):
|
||||
"""
|
||||
Runs the MCTS with the given number of samples
|
||||
:param samples: number of simulations
|
||||
:return: best node containing the best move
|
||||
"""
|
||||
for i in range(samples):
|
||||
node = self.root._select_leaf()
|
||||
score = node._rollout()
|
||||
node._backpropagate(score)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user