Create a new ClassicMcts, which is split into two files

This commit is contained in:
2024-02-01 02:06:03 +01:00
parent 201bf9c13c
commit f521c707d0
5 changed files with 160 additions and 3 deletions

View File

@@ -10,8 +10,11 @@ from stockfish import Stockfish
from chesspp.mcts.baysian_mcts import BayesianMcts
from chesspp.mcts.classic_mcts import ClassicMcts
from chesspp.i_strategy import IStrategy
from typing import Dict
from chesspp.mcts.classic_mcts_v2 import ClassicMctsV2
class Limit:
""" Class to determine when to stop searching for moves """
@@ -156,6 +159,31 @@ class ClassicMctsEngine(Engine):
return chess.engine.PlayResult(move=best_move, ponder=None)
class ClassicMctsEngineV2(Engine):
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
super().__init__(board, color, strategy)
self.node_counts = []
@staticmethod
def get_name() -> str:
return "ClassicMctsEngine V2"
def play(self, board: chess.Board, limit: Limit) -> chess.engine.PlayResult:
mcts = ClassicMctsV2(board, self.color, self.strategy)
node_count = 0
def do():
nonlocal node_count
mcts.build_tree(1)
node_count += 1
limit.run(do)
self.node_counts.append(node_count)
best_move = max(mcts.root.children, key=lambda x: x.score).move if board.turn == chess.WHITE else (
min(mcts.root.children, key=lambda x: x.score).move)
return chess.engine.PlayResult(move=best_move, ponder=None)
class RandomEngine(Engine):
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
super().__init__(board, color, strategy)
@@ -170,7 +198,8 @@ class RandomEngine(Engine):
class StockFishEngine(Engine):
def __init__(self, board: chess.Board, color: chess, stockfish_elo: int, path="../stockfish/stockfish-ubuntu-x86-64-avx2"):
def __init__(self, board: chess.Board, color: chess, stockfish_elo: int,
path="../stockfish/stockfish-ubuntu-x86-64-avx2"):
super().__init__(board, color, None)
self.stockfish = Stockfish(path)
self.stockfish.set_elo_rating(stockfish_elo)

View File

@@ -16,6 +16,7 @@ class EngineEnum(Enum):
Stockfish = 2
Lc0 = 3
Random = 4
ClassicMctsV2 = 5
class StrategyEnum(Enum):
@@ -47,6 +48,9 @@ class EngineFactory:
case EngineEnum.ClassicMcts:
return EngineFactory.classic_mcts(color, strategy)
case EngineEnum.ClassicMctsV2:
return EngineFactory.classic_mcts_v2(color, strategy)
case EngineEnum.BayesianMcts:
return EngineFactory.bayesian_mcts(color, strategy)
@@ -72,6 +76,10 @@ class EngineFactory:
def classic_mcts(color: chess.Color, strategy: IStrategy) -> Engine:
return ClassicMctsEngine(chess.Board(), color, strategy)
@staticmethod
def classic_mcts_v2(color: chess.Color, strategy: IStrategy, board: chess.Board | None = chess.Board()) -> Engine:
return ClassicMctsEngineV2(board, color, strategy)
@staticmethod
def _get_random_strategy(rollout_depth: int) -> IStrategy:
return RandomStrategy(random.Random(), rollout_depth)
@@ -91,4 +99,3 @@ class EngineFactory:
@staticmethod
def _get_pesto_strategy(rollout_depth: int) -> IStrategy:
return PestoStrategy(rollout_depth)

View File

@@ -0,0 +1,97 @@
import math
import random
import chess
import numpy as np
from chesspp.i_strategy import IStrategy
class ClassicMctsNodeV2:
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy, parent=None, move: chess.Move | None = None,
random_state: int | None = None, depth: int = 0):
self.random = random.Random(random_state)
self.board = board
self.color = color
self.strategy = strategy
self.parent = parent
self.move = move
self.children = []
self.visits = 0
self.legal_moves = list(board.legal_moves)
self.untried_actions = self.legal_moves
self.score = 0
self.depth = depth
def _expand(self) -> 'ClassicMctsNodeV2':
"""
Expands the node, i.e., choose an action and apply it to the board
:return:
"""
move = self.random.choice(self.untried_actions)
self.untried_actions.remove(move)
next_board = self.board.copy()
next_board.push(move)
child_node = ClassicMctsNodeV2(next_board, color=not self.color, strategy=self.strategy, parent=self, move=move, depth=self.depth+1)
self.children.append(child_node)
return child_node
def _rollout(self, rollout_depth: int = 4) -> int:
"""
Rolls out the node by simulating a game for a given depth.
Sometimes this step is called 'simulation' or 'playout'.
:return: the score of the rolled out game
"""
copied_board = self.board.copy()
steps = self.depth
for i in range(rollout_depth):
if copied_board.is_game_over():
break
m = self.strategy.pick_next_move(copied_board)
copied_board.push(m)
steps += 1
steps = max(2, steps)
return int(self.strategy.analyze_board(copied_board) / math.log2(steps))
def _backpropagate(self, score: float) -> None:
"""
Backpropagates the results of the rollout
:param score:
:return:
"""
self.visits += 1
# TODO: maybe use score + num of moves together (a win in 1 move is better than a win in 20 moves)
self.score += score
if self.parent:
self.parent._backpropagate(score)
def is_fully_expanded(self) -> bool:
return len(self.untried_actions) == 0
def _best_child(self) -> 'ClassicMctsNodeV2':
"""
Picks the best child according to our policy
:return: the best child
"""
# NOTE: maybe clamp the score between [-1, +1] instead of [-inf, +inf]
choices_weights = [(c.score / c.visits) + np.sqrt(((2 * np.log(self.visits)) / c.visits))
for c in self.children]
best_child_index = np.argmax(choices_weights) if self.color == chess.WHITE else np.argmin(choices_weights)
return self.children[best_child_index]
def _select_leaf(self) -> 'ClassicMctsNodeV2':
"""
Selects a leaf node.
If the node is not expanded is will be expanded.
:return: Leaf node
"""
current_node = self
while not current_node.board.is_game_over():
if not current_node.is_fully_expanded():
return current_node._expand()
else:
current_node = current_node._best_child()
return current_node

View File

@@ -0,0 +1,24 @@
import chess
from chesspp.i_strategy import IStrategy
from chesspp.mcts.classic_mcts_node_v2 import ClassicMctsNodeV2
class ClassicMctsV2:
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
self.board = board
self.color = color
self.strategy = strategy
self.root = ClassicMctsNodeV2(board, color, strategy)
def build_tree(self, samples: int = 1000):
"""
Runs the MCTS with the given number of samples
:param samples: number of simulations
:return: best node containing the best move
"""
for i in range(samples):
node = self.root._select_leaf()
score = node._rollout()
node._backpropagate(score)

View File

@@ -132,7 +132,7 @@ def read_arguments():
description='Compare two engines by playing multiple games against each other'
)
engines = {"ClassicMCTS": EngineEnum.ClassicMcts, "BayesianMCTS": EngineEnum.BayesianMcts,
engines = {"ClassicMCTS": EngineEnum.ClassicMcts, "BayesianMCTS": EngineEnum.BayesianMcts, "ClassicMCTSV2": EngineEnum.ClassicMctsV2,
"Random": EngineEnum.Random, "Stockfish": EngineEnum.Stockfish, "Lc0": EngineEnum.Lc0}
strategies = {"Random": StrategyEnum.Random, "Stockfish": StrategyEnum.Stockfish, "Lc0": StrategyEnum.Lc0,
"RandomStockfish": StrategyEnum.RandomStockfish, "PESTO": StrategyEnum.Pestos}