Added game statistics

This commit is contained in:
Theo Haslinger
2024-02-01 00:38:11 +01:00
parent a01182711c
commit 201bf9c13c
3 changed files with 82 additions and 6 deletions

View File

@@ -25,6 +25,7 @@ class Limit:
def __init__(self, time: float | None = None, nodes: int | None = None):
self.time = time
self.nodes = nodes
self.node_count = 0
def run(self, func, *args, **kwargs):
"""
@@ -36,6 +37,7 @@ class Limit:
if self.nodes:
self._run_nodes(func, *args, **kwargs)
self.node_count = self.nodes
elif self.time:
self._run_time(func, *args, **kwargs)
@@ -47,6 +49,7 @@ class Limit:
start = time.perf_counter_ns()
while (time.perf_counter_ns() - start) / 1e9 < self.time:
func(*args, **kwargs)
self.node_count += 1
def translate_to_engine_limit(self) -> chess.engine.Limit:
if self.nodes:
@@ -95,6 +98,7 @@ class BayesMctsEngine(Engine):
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
super().__init__(board, color, strategy)
self.mcts = BayesianMcts(board, self.strategy, self.color)
self.node_counts = []
@staticmethod
def get_name() -> str:
@@ -103,7 +107,16 @@ class BayesMctsEngine(Engine):
def play(self, board: chess.Board, limit: Limit) -> chess.engine.PlayResult:
if len(board.move_stack) != 0: # apply previous move to mcts --> reuse previous simulation results
self.mcts.apply_move(board.peek())
limit.run(lambda: self.mcts.sample(1))
node_count = 0
def do():
nonlocal node_count
self.mcts.sample(1)
node_count += 1
limit.run(do)
self.node_counts.append(node_count)
best_move = self.get_best_move(self.mcts.get_moves(), board.turn)
self.mcts.apply_move(best_move)
return chess.engine.PlayResult(move=best_move, ponder=None)
@@ -121,6 +134,7 @@ class BayesMctsEngine(Engine):
class ClassicMctsEngine(Engine):
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
super().__init__(board, color, strategy)
self.node_counts = []
@staticmethod
def get_name() -> str:
@@ -128,7 +142,15 @@ class ClassicMctsEngine(Engine):
def play(self, board: chess.Board, limit: Limit) -> chess.engine.PlayResult:
mcts_root = ClassicMcts(board, self.color, self.strategy)
limit.run(lambda: mcts_root.build_tree(1))
node_count = 0
def do():
nonlocal node_count
mcts_root.build_tree(1)
node_count += 1
limit.run(do)
self.node_counts.append(node_count)
best_move = max(mcts_root.children, key=lambda x: x.score).move if board.turn == chess.WHITE else (
min(mcts_root.children, key=lambda x: x.score).move)
return chess.engine.PlayResult(move=best_move, ponder=None)

View File

@@ -1,5 +1,6 @@
import multiprocessing as mp
import random
import time
import chess
import chess.pgn
from typing import Tuple, List
@@ -16,23 +17,61 @@ class Winner(Enum):
Draw = 2
@dataclass
class GameStatistics:
white: str
black: str
average_time_white: float
average_time_black: float
nodes_white: int
nodes_black: int
length: int
@dataclass
class EvaluationResult:
winner: Winner
game: str
statistics: GameStatistics
def simulate_game(white: Engine, black: Engine, limit: Limit, board: chess.Board) -> chess.pgn.Game:
def simulate_game(white: Engine, black: Engine, limit: Limit, board: chess.Board) -> (chess.pgn.Game, GameStatistics):
is_white_playing = True
times_white = []
times_black = []
game_length = 0
while not board.is_game_over():
start = time.time()
play_result = white.play(board, limit) if is_white_playing else black.play(board, limit)
end = time.time()
times_white.append(end - start) if is_white_playing else times_black.append(end - start)
board.push(play_result.move)
is_white_playing = not is_white_playing
game_length += 1
game = chess.pgn.Game.from_board(board)
game.headers['White'] = white.get_name()
game.headers['Black'] = black.get_name()
return game
if hasattr(white, "node_counts"):
white_nodes = sum(white.node_counts) // len(white.node_counts)
else:
white_nodes = 0
if hasattr(black, "node_counts"):
black_nodes = sum(black.node_counts) // len(black.node_counts)
else:
black_nodes = 0
statistics = GameStatistics(white=white.get_name(),
black=black.get_name(),
average_time_white=(sum(times_white)/len(times_white)),
average_time_black=(sum(times_black)/len(times_black)),
nodes_white=white_nodes,
nodes_black=black_nodes,
length=game_length
)
return game, statistics
class Evaluation:
@@ -73,7 +112,7 @@ class Evaluation:
stockfish_path, lc0_path, stockfish_elo), EngineFactory.create_engine(
engine_b, strategy_b, chess.BLACK, stockfish_path, lc0_path, stockfish_elo)
game = simulate_game(white, black, limit, chess.Board())
game, statistics = simulate_game(white, black, limit, chess.Board())
winner = game.end().board().outcome().winner
result = Winner.Draw
@@ -87,4 +126,4 @@ class Evaluation:
case (chess.BLACK, False):
result = Winner.Engine_B
return EvaluationResult(result, str(game))
return EvaluationResult(result, str(game), statistics)

15
main.py
View File

@@ -95,6 +95,21 @@ def test_evaluation():
evaluator = simulation.Evaluation(a, s1, b, s2, limit, stockfish_path, lc0_path, stockfish_elo)
results = evaluator.run(n, proc)
for r in results:
stats = r.statistics
print("====================================")
print(f"Game length: {stats.length} moves")
print(f"{stats.white} (White):")
print(f"Average node count: {stats.nodes_white}")
print(f"Average simulation time: {stats.average_time_white}")
print()
print(f"{stats.black} (Black):")
print(f"Average node count: {stats.nodes_black}")
print(f"Average simulation time: {stats.average_time_black}")
print("====================================")
print()
games_played = len(results)
a_wins = len(list(filter(lambda x: x.winner == simulation.Winner.Engine_A, results)))
b_wins = len(list(filter(lambda x: x.winner == simulation.Winner.Engine_B, results)))