179 lines
6.0 KiB
Python
179 lines
6.0 KiB
Python
import math
|
|
|
|
import torch.distributions as dist
|
|
from chesspp.i_mcts import *
|
|
from chesspp.i_strategy import IStrategy
|
|
from chesspp.util_gaussian import gaussian_ucb1, max_gaussian, min_gaussian
|
|
|
|
|
|
class BayesianMctsNode(IMctsNode):
|
|
def __init__(self, board: chess.Board, strategy: IStrategy, color: chess.Color, parent: Self | None,
|
|
move: chess.Move | None,
|
|
random_state: random.Random, inherit_result: int | None = None, depth: int = 0):
|
|
super().__init__(board, strategy, parent, move, random_state)
|
|
self.color = color # Color of the player whose turn it is
|
|
self.visits = 0
|
|
self.result = inherit_result if inherit_result is not None else 0
|
|
self._set_mu_sigma()
|
|
self.depth = depth
|
|
|
|
def _create_child(self, move: chess.Move) -> IMctsNode:
|
|
copied_board = self.board.copy()
|
|
copied_board.push(move)
|
|
return BayesianMctsNode(copied_board, self.strategy, not self.color, self, move, self.random_state, self.result,
|
|
self.depth + 1)
|
|
|
|
def _set_mu_sigma(self) -> None:
|
|
self.mu = self.result
|
|
self.sigma = 1
|
|
|
|
def _is_new_ucb1_better(self, current, new) -> bool:
|
|
if self.color == chess.WHITE:
|
|
# maximize ucb1
|
|
return new > current
|
|
else:
|
|
# minimize ubc1
|
|
return new < current
|
|
|
|
def _select_best_child(self) -> IMctsNode:
|
|
"""
|
|
Returns the child with the *best* ucb1 score.
|
|
It chooses the child with maximum ucb1 for WHITE, and with minimum ucb1 for BLACK.
|
|
"""
|
|
|
|
if self.board.is_game_over():
|
|
return self
|
|
|
|
best_child = self.random_state.choice(self.children)
|
|
best_ucb1 = gaussian_ucb1(best_child.mu, best_child.sigma, self.visits)
|
|
for child in self.children:
|
|
# if child has no visits, prioritize this child.
|
|
if child.visits == 0:
|
|
best_child = child
|
|
break
|
|
|
|
# save child if it has a *better* score, than our previous best child.
|
|
ucb1 = gaussian_ucb1(child.mu, child.sigma, self.visits)
|
|
if self._is_new_ucb1_better(best_ucb1, ucb1):
|
|
best_ucb1 = ucb1
|
|
best_child = child
|
|
|
|
return best_child
|
|
|
|
def select(self) -> IMctsNode:
|
|
if len(self.children) == 0:
|
|
return self
|
|
elif not self.board.is_game_over():
|
|
return self._select_best_child().select()
|
|
return self
|
|
|
|
def expand(self) -> IMctsNode:
|
|
if self.visits == 0:
|
|
return self
|
|
|
|
for move in self.legal_moves:
|
|
self.children.append(self._create_child(move))
|
|
|
|
return self._select_best_child()
|
|
|
|
def rollout(self, rollout_depth: int = 4) -> int:
|
|
copied_board = self.board.copy()
|
|
steps = self.depth
|
|
for i in range(rollout_depth):
|
|
if copied_board.is_game_over():
|
|
break
|
|
|
|
m = self.strategy.pick_next_move(copied_board)
|
|
if m is None:
|
|
break
|
|
|
|
copied_board.push(m)
|
|
steps += 1
|
|
|
|
steps = max(1, steps)
|
|
score = int(self.strategy.analyze_board(copied_board) / (math.log2(steps) + 1))
|
|
self.result = score
|
|
return score
|
|
|
|
def _combine_gaussians(self, mu1: float, sigma1: float, mu2: float, sigma2: float) -> tuple[float, float]:
|
|
if self.color == chess.WHITE:
|
|
return max_gaussian(mu1, sigma1, mu2, sigma2)
|
|
else:
|
|
return min_gaussian(mu1, sigma1, mu2, sigma2)
|
|
|
|
def backpropagate(self, score: int | None = None) -> None:
|
|
self.visits += 1
|
|
|
|
if score is not None:
|
|
self.result = score
|
|
|
|
if len(self.children) == 0:
|
|
# leaf node
|
|
self._set_mu_sigma()
|
|
else:
|
|
# interior node
|
|
shuffled_children = self.random_state.sample(self.children, len(self.children))
|
|
mu = shuffled_children[0].mu
|
|
sigma = shuffled_children[0].sigma
|
|
for c in shuffled_children[1:]:
|
|
mu, sigma = self._combine_gaussians(mu, sigma, c.mu, c.sigma)
|
|
|
|
# if max_sigma == 0:
|
|
# max_sigma = 0.001
|
|
self.mu = mu
|
|
self.sigma = sigma
|
|
|
|
if self.parent:
|
|
self.parent.backpropagate()
|
|
|
|
def print(self, indent=0):
|
|
print("\t" * indent + f"move={self.move}, visits={self.visits}, mu={self.mu}, sigma={self.sigma}")
|
|
for c in self.children:
|
|
c.print(indent + 1)
|
|
|
|
|
|
class BayesianMcts(IMcts):
|
|
|
|
def __init__(self, board: chess.Board, strategy: IStrategy, color: chess.Color, seed: int | None = None):
|
|
super().__init__(board, strategy, seed)
|
|
self.root = BayesianMctsNode(board, strategy, color, None, None, self.random_state)
|
|
self.root.visits += 1
|
|
self.color = color
|
|
|
|
def sample(self, runs: int = 1000) -> None:
|
|
for i in range(runs):
|
|
if self.board.is_game_over():
|
|
break
|
|
|
|
leaf_node = self.root.select().expand()
|
|
_ = leaf_node.rollout()
|
|
leaf_node.backpropagate()
|
|
|
|
def apply_move(self, move: chess.Move) -> None:
|
|
self.board.push(move)
|
|
self.color = self.board.turn
|
|
|
|
# if a child node contains the move, set this child as new root
|
|
for child in self.get_children():
|
|
if child.move == move:
|
|
self.root = child
|
|
child.depth = 0
|
|
self.root.parent = None
|
|
return
|
|
|
|
# if no child node contains the move, initialize a new tree.
|
|
self.root = BayesianMctsNode(self.board, self.root.strategy, self.color, None, None, self.random_state)
|
|
|
|
def get_children(self) -> list[IMctsNode]:
|
|
return self.root.children
|
|
|
|
def get_moves(self) -> Dict[chess.Move, dist.Normal]:
|
|
res = {}
|
|
for c in self.root.children:
|
|
res[c.move] = dist.Normal(c.mu, c.sigma)
|
|
return res
|
|
|
|
def print(self):
|
|
print("================================")
|
|
self.root.print()
|