Files
Chess_Probabilistic_Program…/main.py
2024-01-29 20:26:16 +01:00

161 lines
5.9 KiB
Python

import random
import time
import chess
import chess.engine
import chess.pgn
from chesspp.classic_mcts import ClassicMcts
from chesspp.baysian_mcts import BayesianMcts
from chesspp.random_strategy import RandomStrategy
from chesspp.stockfish_strategy import StockFishStrategy
from chesspp import engine
from chesspp import util
from chesspp import simulation, eval
import argparse
import os
def test_simulate():
board = chess.Board()
strategy = StockFishStrategy()
white = engine.BayesMctsEngine(board.copy(), chess.WHITE, strategy)
black = engine.RandomEngine(board.copy(), chess.BLACK, RandomStrategy(random.Random()))
game = simulation.simulate_game(white, black, engine.Limit(time=0.5), board)
print(game)
def test_mcts():
fools_mate = "rnbqkbnr/pppp1ppp/4p3/8/5PP1/8/PPPPP2P/RNBQKBNR b KQkq f3 0 2"
board = chess.Board(fools_mate)
mcts_root = ClassicMcts(board, chess.BLACK)
mcts_root.build_tree()
sorted_moves = sorted(mcts_root.children, key=lambda x: x.move.uci())
for c in sorted_moves:
print("move (mcts):", c.move, " with score:", c.score)
def test_bayes_mcts():
global lookup_count
fools_mate = "rnbqkbnr/pppp1ppp/4p3/8/5PP1/8/PPPPP2P/RNBQKBNR b KQkq f3 0 2"
board = chess.Board(fools_mate)
seed = None
strategy = RandomStrategy(random.Random(seed))
mcts = BayesianMcts(board, strategy, chess.BLACK, seed)
t1 = time.time_ns()
mcts.sample(1)
t2 = time.time_ns()
print ((t2 - t1)/1e6)
mcts.print()
for move, score in mcts.get_moves().items():
print("move (mcts):", move, " with score:", score)
def test_stockfish():
fools_mate = "rnbqkbnr/pppp1ppp/4p3/8/5PP1/8/PPPPP2P/RNBQKBNR b KQkq f3 0 2"
board = chess.Board(fools_mate)
moves = {}
untried_moves = list(board.legal_moves)
for move in untried_moves:
util.simulate_game(board, move, 100)
moves[move] = board
board = chess.Board(fools_mate)
sorted_moves = dict(sorted(moves.items(), key=lambda x: x[0].uci()))
analyze_results(sorted_moves)
def test_stockfish_prob():
fools_mate = "rnbqkbnr/pppp1ppp/4p3/8/5PP1/8/PPPPP2P/RNBQKBNR b KQkq f3 0 2"
board = chess.Board(fools_mate)
moves = {}
untried_moves = list(board.legal_moves)
for move in untried_moves:
mean, std = util.simulate_stockfish_prob(board, move, 10, 4)
moves[move] = (mean, std)
board = chess.Board(fools_mate)
sorted_moves = dict(sorted(moves.items(), key=lambda x: x[0].uci()))
for m, s in sorted_moves.items():
print(f"move '{m.uci()}' (prob_stockfish): mean={s[0]}, std={s[1]}")
def analyze_results(moves: dict):
for m, b in moves.items():
manual_score = eval.score_manual(b)
engine_score = eval.score_stockfish(b).white().score(mate_score=100_000)
print(f"score for move {m}: manual_score={manual_score}, engine_score={engine_score}")
def test_evaluation():
a, b, s1, s2, n, limit, stockfish_path, proc = read_arguments()
limit = engine.Limit(time=limit)
if s1 == StockFishStrategy:
strat1 = StockFishStrategy(stockfish_path)
else:
strat1 = s1()
if s2 == StockFishStrategy:
strat2 = StockFishStrategy(stockfish_path)
else:
strat2 = s1()
evaluator = simulation.Evaluation(a, strat1, b, strat2, limit)
results = evaluator.run(n, proc)
a_results = len(list(filter(lambda x: x.winner == simulation.Winner.Engine_A, results))) / len(results) * 100
b_results = len(list(filter(lambda x: x.winner == simulation.Winner.Engine_B, results))) / len(results) * 100
draws = len(list(filter(lambda x: x.winner == simulation.Winner.Draw, results))) / len(results) * 100
print(f"Engine {a.get_name()} won {a_results}% of games")
print(f"Engine {b.get_name()} won {b_results}% of games")
print(f"{draws}% of games resulted in a draw")
def read_arguments():
parser = argparse.ArgumentParser(
prog='EvaluateEngine',
description='Compare two engines by playing multiple games against each other'
)
engines = {"Classic": engine.ClassicMctsEngine, "Baysian": engine.BayesMctsEngine, "Random": engine.RandomEngine}
strategies = {"Random": RandomStrategy, "Stockfish": StockFishStrategy}
if os.name == 'nt':
stockfish_default = "../stockfish/stockfish-windows-x86-64-avx2"
else:
stockfish_default = "../stockfish/stockfish-ubuntu-x86-64-avx2"
parser.add_argument("--proc", default=2, help="Number of processors to use for simulation, default=1")
parser.add_argument("--time", default=0.5, help="Time limit for each simulation step, default=0.5")
parser.add_argument("-n", default=100, help="Number of games to simulate, default=100")
parser.add_argument("--stockfish", default=stockfish_default,
help=f"Path for stockfish executable, default='{stockfish_default}'")
parser.add_argument("--engine1", "--e1", help="Engine A for the simulation", choices=engines.keys(), required=True)
parser.add_argument("--engine2", "--e2", help="Engine B for the simulation", choices=engines.keys(), required=True)
parser.add_argument("--strategy1", "--s1", default=list(strategies.keys())[0],
help="Strategy for engine A for the rollout",
choices=strategies.keys())
parser.add_argument("--strategy2", "--s2", default=list(strategies.keys())[0],
help="Strategy for engine B for the rollout",
choices=strategies)
args = parser.parse_args()
engine1 = engines[args.engine1]
engine2 = engines[args.engine2]
strategy1 = strategies[args.strategy1]
strategy2 = strategies[args.strategy2]
return engine1, engine2, strategy1, strategy2, int(args.n), float(args.time), args.stockfish, int(args.proc)
def main():
test_evaluation()
# test_simulate()
# test_mcts()
# test_stockfish()
# test_stockfish_prob()
# test_bayes_mcts()
if __name__ == '__main__':
main()