Files
Chess_Probabilistic_Program…/chesspp/util_gaussian.py

108 lines
3.2 KiB
Python

import math
import torch
import torch.distributions as dist
from torch import exp
F1: dict[float, float] = {}
F2: dict[float, float] = {}
CDF: dict[float, float] = {}
lookup_count = 0
def get_lookup_count():
global lookup_count
return lookup_count
def max_gaussian(mu1, sigma1, mu2, sigma2) -> tuple[float, float]:
global lookup_count
global F1
global F2
global CDF
"""
Returns the combined max gaussian of two Gaussians represented by mu1, sigma1, mu2, simga2
:param mu1: mu of the first Gaussian
:param sigma1: sigma of the first Gaussian
:param mu2: mu of the second Gaussian
:param sigma2: sigma of the second Gaussian
:return: mu and sigma maximized
"""
# we assume independence of the two gaussians
#print(mu1, sigma1, mu2, sigma2)
normal = dist.Normal(0, 1)
sigma_m = math.sqrt(sigma1 ** 2 + sigma2 ** 2)
alpha = (mu1 - mu2) / sigma_m
if alpha in CDF:
cdf_alpha = CDF[alpha]
lookup_count += 1
else:
cdf_alpha = normal.cdf(torch.tensor(alpha)).item()
CDF[alpha] = cdf_alpha
pdf_alpha = exp(normal.log_prob(torch.tensor(alpha))).item()
if alpha in F1:
f1_alpha = F1[alpha]
lookup_count += 1
else:
f1_alpha = alpha * cdf_alpha + pdf_alpha
F1[alpha] = f1_alpha
if alpha in F2:
f2_alpha = F2[alpha]
lookup_count += 1
else:
f2_alpha = alpha ** 2 * cdf_alpha * (1 - cdf_alpha) + (
1 - 2 * cdf_alpha) * alpha * pdf_alpha - pdf_alpha ** 2
F2[alpha] = f2_alpha
mu = mu2 + sigma_m * f1_alpha
sigma = math.sqrt(sigma2 ** 2 + (sigma1 ** 2 - sigma2 ** 2) * cdf_alpha + sigma_m ** 2 * f2_alpha)
#sigma = math.sqrt((mu1**2 + sigma1**2) * cdf_alpha + (mu2**2 + sigma2**2) * (1 - cdf_alpha) + (mu1 + mu2) * sigma_m * pdf_alpha - mu**2)
return mu, sigma
def min_gaussian(mu1, sigma1, mu2, sigma2) -> tuple[float, float]:
"""
Returns the combined min gaussian of two Gaussians represented by mu1, sigma1, mu2, simga2
:param mu1: mu of the first Gaussian
:param sigma1: sigma of the first Gaussian
:param mu2: mu of the second Gaussian
:param sigma2: sigma of the second Gaussian
:return: mu and sigma minimized
"""
try:
normal = dist.Normal(0, 1)
sigma_m = math.sqrt(sigma1 ** 2 + sigma2 ** 2)
alpha = (mu1 - mu2) / sigma_m
cdf_alpha = normal.cdf(torch.tensor(alpha)).item()
pdf_alpha = exp(normal.log_prob(torch.tensor(alpha))).item()
pdf_alpha_neg = exp(normal.log_prob(torch.tensor(-alpha))).item()
mu = mu1 * (1 - cdf_alpha) + mu2 * cdf_alpha - pdf_alpha_neg * sigma_m
sigma = math.sqrt((mu1**2 + sigma1**2) * (1 - cdf_alpha) + (mu2**2 + sigma2**2) * cdf_alpha - (mu1 + mu2) * sigma_m * pdf_alpha - mu**2)
return mu, sigma
except ValueError:
print(mu1, sigma1, mu2, sigma2)
def beta_mean(alpha, beta):
return alpha / (alpha + beta)
def beta_std(alpha, beta):
try:
return math.sqrt((alpha * beta) / ((alpha * beta)**2 * (alpha + beta + 1)))
except ZeroDivisionError:
print(alpha, beta)
def gaussian_ucb1(mu, sigma, N) -> float:
return mu + math.sqrt(2 * math.log(N) * sigma)