Files
Chess_Probabilistic_Program…/main.py

104 lines
3.4 KiB
Python

import random
import chess
import chess.engine
import chess.pgn
from chesspp.classic_mcts import ClassicMcts
from chesspp.baysian_mcts import BayesianMcts
from chesspp.random_strategy import RandomStrategy
from chesspp import engine
from chesspp import util
from chesspp import simulation, eval
def test_simulate():
white = engine.ClassicMctsEngine(chess.WHITE)
black = engine.ClassicMctsEngine(chess.BLACK)
game = simulation.simulate_game(white, black)
print(game)
def test_mcts():
fools_mate = "rnbqkbnr/pppp1ppp/4p3/8/5PP1/8/PPPPP2P/RNBQKBNR b KQkq f3 0 2"
board = chess.Board(fools_mate)
mcts_root = ClassicMcts(board, chess.BLACK)
mcts_root.build_tree()
sorted_moves = sorted(mcts_root.children, key=lambda x: x.move.uci())
for c in sorted_moves:
print("move (mcts):", c.move, " with score:", c.score)
def test_bayes_mcts():
global lookup_count
fools_mate = "rnbqkbnr/pppp1ppp/4p3/8/5PP1/8/PPPPP2P/RNBQKBNR b KQkq f3 0 2"
board = chess.Board(fools_mate)
seed = None
strategy = RandomStrategy(random.Random(seed))
mcts = BayesianMcts(board, strategy, chess.BLACK, seed)
mcts.sample()
mcts.print()
for move, score in mcts.get_moves().items():
print("move (mcts):", move, " with score:", score)
def test_stockfish():
fools_mate = "rnbqkbnr/pppp1ppp/4p3/8/5PP1/8/PPPPP2P/RNBQKBNR b KQkq f3 0 2"
board = chess.Board(fools_mate)
moves = {}
untried_moves = list(board.legal_moves)
for move in untried_moves:
util.simulate_game(board, move, 100)
moves[move] = board
board = chess.Board(fools_mate)
sorted_moves = dict(sorted(moves.items(), key=lambda x: x[0].uci()))
analyze_results(sorted_moves)
def test_stockfish_prob():
fools_mate = "rnbqkbnr/pppp1ppp/4p3/8/5PP1/8/PPPPP2P/RNBQKBNR b KQkq f3 0 2"
board = chess.Board(fools_mate)
moves = {}
untried_moves = list(board.legal_moves)
for move in untried_moves:
mean, std = util.simulate_stockfish_prob(board, move, 10, 4)
moves[move] = (mean, std)
board = chess.Board(fools_mate)
sorted_moves = dict(sorted(moves.items(), key=lambda x: x[0].uci()))
for m, s in sorted_moves.items():
print(f"move '{m.uci()}' (prob_stockfish): mean={s[0]}, std={s[1]}")
def analyze_results(moves: dict):
for m, b in moves.items():
manual_score = eval.score_manual(b)
engine_score = eval.score_stockfish(b).white().score(mate_score=100_000)
print(f"score for move {m}: manual_score={manual_score}, engine_score={engine_score}")
def test_evaluation():
a = engine.ClassicMctsEngine
b = engine.RandomEngine
limit = engine.Limit(time=0.5)
evaluator = simulation.Evaluation(a, b, limit)
results = evaluator.run(1)
a_results = len(list(filter(lambda x: x.winner == simulation.Winner.Engine_A, results))) / len(results) * 100
b_results = len(list(filter(lambda x: x.winner == simulation.Winner.Engine_B, results))) / len(results) * 100
draws = len(list(filter(lambda x: x.winner == simulation.Winner.Draw, results))) / len(results) * 100
print(f"Engine {a.get_name()} won {a_results}% of games")
print(f"Engine {b.get_name()} won {b_results}% of games")
print(f"{draws}% of games resulted in a draw")
def main():
test_evaluation()
# test_simulate()
# test_mcts()
# test_stockfish()
# test_stockfish_prob()
# test_bayes_mcts()
if __name__ == '__main__':
main()