added reuse of subtree for simulations (apply_move), played around with rollout depth
This commit is contained in:
@@ -1,14 +1,12 @@
|
|||||||
import chess
|
|
||||||
from chesspp.i_mcts import *
|
from chesspp.i_mcts import *
|
||||||
from chesspp.i_strategy import IStrategy
|
from chesspp.i_strategy import IStrategy
|
||||||
from chesspp.util_gaussian import gaussian_ucb1, max_gaussian, min_gaussian
|
from chesspp.util_gaussian import gaussian_ucb1, max_gaussian, min_gaussian
|
||||||
from chesspp.eval import score_manual
|
from chesspp.eval import score_manual
|
||||||
import numpy as np
|
|
||||||
import math
|
|
||||||
|
|
||||||
|
|
||||||
class BayesianMctsNode(IMctsNode):
|
class BayesianMctsNode(IMctsNode):
|
||||||
def __init__(self, board: chess.Board, strategy: IStrategy, color: chess.Color, parent: Self | None, move: chess.Move | None,
|
def __init__(self, board: chess.Board, strategy: IStrategy, color: chess.Color, parent: Self | None,
|
||||||
|
move: chess.Move | None,
|
||||||
random_state: random.Random, inherit_result: int | None = None, depth: int = 0):
|
random_state: random.Random, inherit_result: int | None = None, depth: int = 0):
|
||||||
super().__init__(board, strategy, parent, move, random_state)
|
super().__init__(board, strategy, parent, move, random_state)
|
||||||
self.color = color # Color of the player whose turn it is
|
self.color = color # Color of the player whose turn it is
|
||||||
@@ -20,7 +18,8 @@ class BayesianMctsNode(IMctsNode):
|
|||||||
def _create_child(self, move: chess.Move) -> IMctsNode:
|
def _create_child(self, move: chess.Move) -> IMctsNode:
|
||||||
copied_board = self.board.copy()
|
copied_board = self.board.copy()
|
||||||
copied_board.push(move)
|
copied_board.push(move)
|
||||||
return BayesianMctsNode(copied_board, self.strategy, not self.color, self, move, self.random_state, self.result, self.depth+1)
|
return BayesianMctsNode(copied_board, self.strategy, not self.color, self, move, self.random_state, self.result,
|
||||||
|
self.depth + 1)
|
||||||
|
|
||||||
def _set_mu_sigma(self) -> None:
|
def _set_mu_sigma(self) -> None:
|
||||||
self.mu = self.result
|
self.mu = self.result
|
||||||
@@ -74,7 +73,7 @@ class BayesianMctsNode(IMctsNode):
|
|||||||
|
|
||||||
return self._select_best_child()
|
return self._select_best_child()
|
||||||
|
|
||||||
def rollout(self, rollout_depth: int = 20) -> int:
|
def rollout(self, rollout_depth: int = 4) -> int:
|
||||||
copied_board = self.board.copy()
|
copied_board = self.board.copy()
|
||||||
steps = self.depth
|
steps = self.depth
|
||||||
for i in range(rollout_depth):
|
for i in range(rollout_depth):
|
||||||
@@ -146,7 +145,7 @@ class BayesianMcts(IMcts):
|
|||||||
|
|
||||||
def apply_move(self, move: chess.Move) -> None:
|
def apply_move(self, move: chess.Move) -> None:
|
||||||
self.board.push(move)
|
self.board.push(move)
|
||||||
self.color = not self.color
|
self.color = self.board.turn
|
||||||
|
|
||||||
# if a child node contains the move, set this child as new root
|
# if a child node contains the move, set this child as new root
|
||||||
for child in self.get_children():
|
for child in self.get_children():
|
||||||
|
|||||||
@@ -35,7 +35,7 @@ class ClassicMcts:
|
|||||||
self.children.append(child_node)
|
self.children.append(child_node)
|
||||||
return child_node
|
return child_node
|
||||||
|
|
||||||
def _rollout(self, rollout_depth: int = 20) -> int:
|
def _rollout(self, rollout_depth: int = 3) -> int:
|
||||||
"""
|
"""
|
||||||
Rolls out the node by simulating a game for a given depth.
|
Rolls out the node by simulating a game for a given depth.
|
||||||
Sometimes this step is called 'simulation' or 'playout'.
|
Sometimes this step is called 'simulation' or 'playout'.
|
||||||
|
|||||||
@@ -1,11 +1,13 @@
|
|||||||
from abc import ABC, abstractmethod
|
|
||||||
import chess
|
|
||||||
import chess.engine
|
|
||||||
import random
|
import random
|
||||||
import time
|
import time
|
||||||
from chesspp.classic_mcts import ClassicMcts
|
from abc import ABC, abstractmethod
|
||||||
|
|
||||||
|
import chess
|
||||||
|
import chess.engine
|
||||||
|
|
||||||
from chesspp.baysian_mcts import BayesianMcts
|
from chesspp.baysian_mcts import BayesianMcts
|
||||||
from chesspp.random_strategy import RandomStrategy
|
from chesspp.classic_mcts import ClassicMcts
|
||||||
|
from chesspp.i_strategy import IStrategy
|
||||||
|
|
||||||
|
|
||||||
class Limit:
|
class Limit:
|
||||||
@@ -45,11 +47,17 @@ class Limit:
|
|||||||
|
|
||||||
|
|
||||||
class Engine(ABC):
|
class Engine(ABC):
|
||||||
|
board: chess.Board
|
||||||
|
"""The chess board"""
|
||||||
color: chess.Color
|
color: chess.Color
|
||||||
"""The side the engine plays (``chess.WHITE`` or ``chess.BLACK``)."""
|
"""The side the engine plays (``chess.WHITE`` or ``chess.BLACK``)."""
|
||||||
|
strategy: IStrategy
|
||||||
|
"""The strategy used to pick moves when simulating games."""
|
||||||
|
|
||||||
def __init__(self, color: chess.Color):
|
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
|
||||||
|
self.board = board
|
||||||
self.color = color
|
self.color = color
|
||||||
|
self.strategy = strategy
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def play(self, board: chess.Board, limit: Limit) -> chess.engine.PlayResult:
|
def play(self, board: chess.Board, limit: Limit) -> chess.engine.PlayResult:
|
||||||
@@ -72,27 +80,32 @@ class Engine(ABC):
|
|||||||
|
|
||||||
|
|
||||||
class BayesMctsEngine(Engine):
|
class BayesMctsEngine(Engine):
|
||||||
def __init__(self, color: chess.Color):
|
mcts: BayesianMcts
|
||||||
super().__init__(color)
|
"""The Bayesian MCTS"""
|
||||||
|
|
||||||
|
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
|
||||||
|
super().__init__(board, color, strategy)
|
||||||
|
self.mcts = BayesianMcts(board, self.strategy, self.color)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def get_name() -> str:
|
def get_name() -> str:
|
||||||
return "BayesMctsEngine"
|
return "BayesMctsEngine"
|
||||||
|
|
||||||
def play(self, board: chess.Board, limit: Limit) -> chess.engine.PlayResult:
|
def play(self, board: chess.Board, limit: Limit) -> chess.engine.PlayResult:
|
||||||
strategy = RandomStrategy(random.Random())
|
if len(board.move_stack) != 0: # apply previous move to mcts --> reuse previous simulation results
|
||||||
bayes_mcts = BayesianMcts(board, strategy, self.color)
|
self.mcts.apply_move(board.peek())
|
||||||
bayes_mcts.sample(1000)
|
self.mcts.sample()
|
||||||
# limit.run(lambda: mcts_root.build_tree())
|
# limit.run(lambda: mcts_root.build_tree())
|
||||||
best_move = max(bayes_mcts.get_moves().items(), key=lambda x: x[1])[0] if board.turn == chess.WHITE else (
|
best_move = max(self.mcts.get_moves().items(), key=lambda x: x[1])[0] if board.turn == chess.WHITE else (
|
||||||
min(bayes_mcts.get_moves().items(), key=lambda x: x[1])[0])
|
min(self.mcts.get_moves().items(), key=lambda x: x[1])[0])
|
||||||
print(best_move)
|
print(best_move)
|
||||||
|
self.mcts.apply_move(best_move)
|
||||||
return chess.engine.PlayResult(move=best_move, ponder=None)
|
return chess.engine.PlayResult(move=best_move, ponder=None)
|
||||||
|
|
||||||
|
|
||||||
class ClassicMctsEngine(Engine):
|
class ClassicMctsEngine(Engine):
|
||||||
def __init__(self, color: chess.Color):
|
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
|
||||||
super().__init__(color)
|
super().__init__(board, color, strategy)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def get_name() -> str:
|
def get_name() -> str:
|
||||||
@@ -108,12 +121,12 @@ class ClassicMctsEngine(Engine):
|
|||||||
|
|
||||||
|
|
||||||
class RandomEngine(Engine):
|
class RandomEngine(Engine):
|
||||||
def __init__(self, color: chess.Color):
|
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
|
||||||
super().__init__(color)
|
super().__init__(board, color, strategy)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def get_name() -> str:
|
def get_name() -> str:
|
||||||
return "Random"
|
return "RandomEngine"
|
||||||
|
|
||||||
def play(self, board: chess.Board, limit: Limit) -> chess.engine.PlayResult:
|
def play(self, board: chess.Board, limit: Limit) -> chess.engine.PlayResult:
|
||||||
move = random.choice(list(board.legal_moves))
|
move = random.choice(list(board.legal_moves))
|
||||||
|
|||||||
@@ -21,11 +21,12 @@ class EvaluationResult:
|
|||||||
game: chess.pgn.Game
|
game: chess.pgn.Game
|
||||||
|
|
||||||
|
|
||||||
def simulate_game(white: Engine, black: Engine, limit: Limit) -> chess.pgn.Game:
|
def simulate_game(white: Engine, black: Engine, limit: Limit, board: chess.Board) -> chess.pgn.Game:
|
||||||
board = chess.Board()
|
|
||||||
|
|
||||||
is_white_playing = True
|
is_white_playing = True
|
||||||
while not board.is_game_over():
|
while not board.is_game_over():
|
||||||
|
print("simulation board:\n", board)
|
||||||
|
print()
|
||||||
|
print("mcts board:\n", white.mcts.board)
|
||||||
play_result = white.play(board, limit) if is_white_playing else black.play(board, limit)
|
play_result = white.play(board, limit) if is_white_playing else black.play(board, limit)
|
||||||
board.push(play_result.move)
|
board.push(play_result.move)
|
||||||
is_white_playing = not is_white_playing
|
is_white_playing = not is_white_playing
|
||||||
|
|||||||
16
chesspp/stockfish_strategy.py
Normal file
16
chesspp/stockfish_strategy.py
Normal file
@@ -0,0 +1,16 @@
|
|||||||
|
import chess
|
||||||
|
from chesspp.i_strategy import IStrategy
|
||||||
|
import chess.engine
|
||||||
|
|
||||||
|
|
||||||
|
class StockFishStrategy(IStrategy):
|
||||||
|
stockfish: chess.engine.SimpleEngine
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.stockfish = chess.engine.SimpleEngine.popen_uci(
|
||||||
|
"/home/luke/projects/pp-project/chess-engine-pp/stockfish/stockfish-ubuntu-x86-64-avx2")
|
||||||
|
|
||||||
|
def pick_next_move(self, board: chess.Board) -> chess.Move | None:
|
||||||
|
move = self.stockfish.play(board, chess.engine.Limit(depth=4)).move
|
||||||
|
print("stockfish picked:", move)
|
||||||
|
return move
|
||||||
@@ -1,10 +1,14 @@
|
|||||||
import os
|
import os
|
||||||
import asyncio
|
import asyncio
|
||||||
|
import random
|
||||||
|
|
||||||
import aiohttp
|
import aiohttp
|
||||||
from aiohttp import web
|
from aiohttp import web
|
||||||
|
|
||||||
import chess
|
import chess
|
||||||
from chesspp import engine
|
from chesspp import engine
|
||||||
|
from chesspp.stockfish_strategy import StockFishStrategy
|
||||||
|
from chesspp.random_strategy import RandomStrategy
|
||||||
|
|
||||||
_DIR = os.path.abspath(os.path.dirname(__file__))
|
_DIR = os.path.abspath(os.path.dirname(__file__))
|
||||||
_DATA_DIR = os.path.abspath(os.path.join(_DIR, "static_data"))
|
_DATA_DIR = os.path.abspath(os.path.join(_DIR, "static_data"))
|
||||||
@@ -71,7 +75,8 @@ class WebInterface:
|
|||||||
|
|
||||||
async def turns():
|
async def turns():
|
||||||
""" Simulates the game and sends the response to the client """
|
""" Simulates the game and sends the response to the client """
|
||||||
runner = Simulate(self.white(chess.WHITE), self.black(chess.BLACK)).run(limit)
|
runner = Simulate(self.white(chess.Board(), chess.WHITE, RandomStrategy(random.Random())), self.black(
|
||||||
|
chess.Board(), chess.BLACK, RandomStrategy(random.Random()))).run(limit)
|
||||||
def sim():
|
def sim():
|
||||||
return next(runner, None)
|
return next(runner, None)
|
||||||
|
|
||||||
@@ -100,4 +105,4 @@ class WebInterface:
|
|||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
limit = engine.Limit(time=0.5)
|
limit = engine.Limit(time=0.5)
|
||||||
WebInterface(engine.ClassicMctsEngine, engine.ClassicMctsEngine, limit).run_app()
|
WebInterface(engine.BayesMctsEngine, engine.ClassicMctsEngine, limit).run_app()
|
||||||
|
|||||||
14
main.py
14
main.py
@@ -5,15 +5,18 @@ import chess.pgn
|
|||||||
from chesspp.classic_mcts import ClassicMcts
|
from chesspp.classic_mcts import ClassicMcts
|
||||||
from chesspp.baysian_mcts import BayesianMcts
|
from chesspp.baysian_mcts import BayesianMcts
|
||||||
from chesspp.random_strategy import RandomStrategy
|
from chesspp.random_strategy import RandomStrategy
|
||||||
|
from chesspp.stockfish_strategy import StockFishStrategy
|
||||||
from chesspp import engine
|
from chesspp import engine
|
||||||
from chesspp import util
|
from chesspp import util
|
||||||
from chesspp import simulation, eval
|
from chesspp import simulation, eval
|
||||||
|
|
||||||
|
|
||||||
def test_simulate():
|
def test_simulate():
|
||||||
white = engine.ClassicMctsEngine(chess.WHITE)
|
board = chess.Board()
|
||||||
black = engine.ClassicMctsEngine(chess.BLACK)
|
strategy = StockFishStrategy()
|
||||||
game = simulation.simulate_game(white, black)
|
white = engine.BayesMctsEngine(board.copy(), chess.WHITE, strategy)
|
||||||
|
black = engine.RandomEngine(board.copy(), chess.BLACK, RandomStrategy(random.Random()))
|
||||||
|
game = simulation.simulate_game(white, black, engine.Limit(time=0.5), board)
|
||||||
print(game)
|
print(game)
|
||||||
|
|
||||||
|
|
||||||
@@ -92,12 +95,13 @@ def test_evaluation():
|
|||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
test_evaluation()
|
# test_evaluation()
|
||||||
# test_simulate()
|
test_simulate()
|
||||||
# test_mcts()
|
# test_mcts()
|
||||||
# test_stockfish()
|
# test_stockfish()
|
||||||
# test_stockfish_prob()
|
# test_stockfish_prob()
|
||||||
# test_bayes_mcts()
|
# test_bayes_mcts()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
main()
|
main()
|
||||||
|
|||||||
Reference in New Issue
Block a user