added reuse of subtree for simulations (apply_move), played around with rollout depth

This commit is contained in:
2024-01-29 12:26:19 +01:00
parent a2cb3a5719
commit f1a36964df
7 changed files with 80 additions and 42 deletions

View File

@@ -1,11 +1,13 @@
from abc import ABC, abstractmethod
import chess
import chess.engine
import random
import time
from chesspp.classic_mcts import ClassicMcts
from abc import ABC, abstractmethod
import chess
import chess.engine
from chesspp.baysian_mcts import BayesianMcts
from chesspp.random_strategy import RandomStrategy
from chesspp.classic_mcts import ClassicMcts
from chesspp.i_strategy import IStrategy
class Limit:
@@ -45,11 +47,17 @@ class Limit:
class Engine(ABC):
board: chess.Board
"""The chess board"""
color: chess.Color
"""The side the engine plays (``chess.WHITE`` or ``chess.BLACK``)."""
strategy: IStrategy
"""The strategy used to pick moves when simulating games."""
def __init__(self, color: chess.Color):
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
self.board = board
self.color = color
self.strategy = strategy
@abstractmethod
def play(self, board: chess.Board, limit: Limit) -> chess.engine.PlayResult:
@@ -72,27 +80,32 @@ class Engine(ABC):
class BayesMctsEngine(Engine):
def __init__(self, color: chess.Color):
super().__init__(color)
mcts: BayesianMcts
"""The Bayesian MCTS"""
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
super().__init__(board, color, strategy)
self.mcts = BayesianMcts(board, self.strategy, self.color)
@staticmethod
def get_name() -> str:
return "BayesMctsEngine"
def play(self, board: chess.Board, limit: Limit) -> chess.engine.PlayResult:
strategy = RandomStrategy(random.Random())
bayes_mcts = BayesianMcts(board, strategy, self.color)
bayes_mcts.sample(1000)
if len(board.move_stack) != 0: # apply previous move to mcts --> reuse previous simulation results
self.mcts.apply_move(board.peek())
self.mcts.sample()
# limit.run(lambda: mcts_root.build_tree())
best_move = max(bayes_mcts.get_moves().items(), key=lambda x: x[1])[0] if board.turn == chess.WHITE else (
min(bayes_mcts.get_moves().items(), key=lambda x: x[1])[0])
best_move = max(self.mcts.get_moves().items(), key=lambda x: x[1])[0] if board.turn == chess.WHITE else (
min(self.mcts.get_moves().items(), key=lambda x: x[1])[0])
print(best_move)
self.mcts.apply_move(best_move)
return chess.engine.PlayResult(move=best_move, ponder=None)
class ClassicMctsEngine(Engine):
def __init__(self, color: chess.Color):
super().__init__(color)
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
super().__init__(board, color, strategy)
@staticmethod
def get_name() -> str:
@@ -108,12 +121,12 @@ class ClassicMctsEngine(Engine):
class RandomEngine(Engine):
def __init__(self, color: chess.Color):
super().__init__(color)
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
super().__init__(board, color, strategy)
@staticmethod
def get_name() -> str:
return "Random"
return "RandomEngine"
def play(self, board: chess.Board, limit: Limit) -> chess.engine.PlayResult:
move = random.choice(list(board.legal_moves))