added reuse of subtree for simulations (apply_move), played around with rollout depth
This commit is contained in:
@@ -1,17 +1,15 @@
|
||||
import chess
|
||||
from chesspp.i_mcts import *
|
||||
from chesspp.i_strategy import IStrategy
|
||||
from chesspp.util_gaussian import gaussian_ucb1, max_gaussian, min_gaussian
|
||||
from chesspp.eval import score_manual
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
|
||||
class BayesianMctsNode(IMctsNode):
|
||||
def __init__(self, board: chess.Board, strategy: IStrategy, color: chess.Color, parent: Self | None, move: chess.Move | None,
|
||||
def __init__(self, board: chess.Board, strategy: IStrategy, color: chess.Color, parent: Self | None,
|
||||
move: chess.Move | None,
|
||||
random_state: random.Random, inherit_result: int | None = None, depth: int = 0):
|
||||
super().__init__(board, strategy, parent, move, random_state)
|
||||
self.color = color # Color of the player whose turn it is
|
||||
self.color = color # Color of the player whose turn it is
|
||||
self.visits = 0
|
||||
self.result = inherit_result if inherit_result is not None else 0
|
||||
self._set_mu_sigma()
|
||||
@@ -20,7 +18,8 @@ class BayesianMctsNode(IMctsNode):
|
||||
def _create_child(self, move: chess.Move) -> IMctsNode:
|
||||
copied_board = self.board.copy()
|
||||
copied_board.push(move)
|
||||
return BayesianMctsNode(copied_board, self.strategy, not self.color, self, move, self.random_state, self.result, self.depth+1)
|
||||
return BayesianMctsNode(copied_board, self.strategy, not self.color, self, move, self.random_state, self.result,
|
||||
self.depth + 1)
|
||||
|
||||
def _set_mu_sigma(self) -> None:
|
||||
self.mu = self.result
|
||||
@@ -74,7 +73,7 @@ class BayesianMctsNode(IMctsNode):
|
||||
|
||||
return self._select_best_child()
|
||||
|
||||
def rollout(self, rollout_depth: int = 20) -> int:
|
||||
def rollout(self, rollout_depth: int = 4) -> int:
|
||||
copied_board = self.board.copy()
|
||||
steps = self.depth
|
||||
for i in range(rollout_depth):
|
||||
@@ -124,29 +123,29 @@ class BayesianMctsNode(IMctsNode):
|
||||
self.parent.backpropagate()
|
||||
|
||||
def print(self, indent=0):
|
||||
print("\t"*indent + f"move={self.move}, visits={self.visits}, mu={self.mu}, sigma={self.sigma}")
|
||||
print("\t" * indent + f"move={self.move}, visits={self.visits}, mu={self.mu}, sigma={self.sigma}")
|
||||
for c in self.children:
|
||||
c.print(indent+1)
|
||||
c.print(indent + 1)
|
||||
|
||||
|
||||
class BayesianMcts(IMcts):
|
||||
|
||||
def __init__(self, board: chess.Board, strategy: IStrategy, color: chess.Color, seed: int | None = None):
|
||||
super().__init__(board, strategy, seed)
|
||||
self.root = BayesianMctsNode(board, strategy, color,None, None, self.random_state)
|
||||
self.root = BayesianMctsNode(board, strategy, color, None, None, self.random_state)
|
||||
self.root.visits += 1
|
||||
self.color = color
|
||||
|
||||
def sample(self, runs: int = 1000) -> None:
|
||||
for i in range(runs):
|
||||
#print(f"sample {i}")
|
||||
# print(f"sample {i}")
|
||||
leaf_node = self.root.select().expand()
|
||||
_ = leaf_node.rollout()
|
||||
leaf_node.backpropagate()
|
||||
|
||||
def apply_move(self, move: chess.Move) -> None:
|
||||
self.board.push(move)
|
||||
self.color = not self.color
|
||||
self.color = self.board.turn
|
||||
|
||||
# if a child node contains the move, set this child as new root
|
||||
for child in self.get_children():
|
||||
@@ -169,4 +168,4 @@ class BayesianMcts(IMcts):
|
||||
|
||||
def print(self):
|
||||
print("================================")
|
||||
self.root.print()
|
||||
self.root.print()
|
||||
|
||||
@@ -35,7 +35,7 @@ class ClassicMcts:
|
||||
self.children.append(child_node)
|
||||
return child_node
|
||||
|
||||
def _rollout(self, rollout_depth: int = 20) -> int:
|
||||
def _rollout(self, rollout_depth: int = 3) -> int:
|
||||
"""
|
||||
Rolls out the node by simulating a game for a given depth.
|
||||
Sometimes this step is called 'simulation' or 'playout'.
|
||||
|
||||
@@ -1,11 +1,13 @@
|
||||
from abc import ABC, abstractmethod
|
||||
import chess
|
||||
import chess.engine
|
||||
import random
|
||||
import time
|
||||
from chesspp.classic_mcts import ClassicMcts
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
import chess
|
||||
import chess.engine
|
||||
|
||||
from chesspp.baysian_mcts import BayesianMcts
|
||||
from chesspp.random_strategy import RandomStrategy
|
||||
from chesspp.classic_mcts import ClassicMcts
|
||||
from chesspp.i_strategy import IStrategy
|
||||
|
||||
|
||||
class Limit:
|
||||
@@ -45,11 +47,17 @@ class Limit:
|
||||
|
||||
|
||||
class Engine(ABC):
|
||||
board: chess.Board
|
||||
"""The chess board"""
|
||||
color: chess.Color
|
||||
"""The side the engine plays (``chess.WHITE`` or ``chess.BLACK``)."""
|
||||
strategy: IStrategy
|
||||
"""The strategy used to pick moves when simulating games."""
|
||||
|
||||
def __init__(self, color: chess.Color):
|
||||
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
|
||||
self.board = board
|
||||
self.color = color
|
||||
self.strategy = strategy
|
||||
|
||||
@abstractmethod
|
||||
def play(self, board: chess.Board, limit: Limit) -> chess.engine.PlayResult:
|
||||
@@ -72,27 +80,32 @@ class Engine(ABC):
|
||||
|
||||
|
||||
class BayesMctsEngine(Engine):
|
||||
def __init__(self, color: chess.Color):
|
||||
super().__init__(color)
|
||||
mcts: BayesianMcts
|
||||
"""The Bayesian MCTS"""
|
||||
|
||||
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
|
||||
super().__init__(board, color, strategy)
|
||||
self.mcts = BayesianMcts(board, self.strategy, self.color)
|
||||
|
||||
@staticmethod
|
||||
def get_name() -> str:
|
||||
return "BayesMctsEngine"
|
||||
|
||||
def play(self, board: chess.Board, limit: Limit) -> chess.engine.PlayResult:
|
||||
strategy = RandomStrategy(random.Random())
|
||||
bayes_mcts = BayesianMcts(board, strategy, self.color)
|
||||
bayes_mcts.sample(1000)
|
||||
if len(board.move_stack) != 0: # apply previous move to mcts --> reuse previous simulation results
|
||||
self.mcts.apply_move(board.peek())
|
||||
self.mcts.sample()
|
||||
# limit.run(lambda: mcts_root.build_tree())
|
||||
best_move = max(bayes_mcts.get_moves().items(), key=lambda x: x[1])[0] if board.turn == chess.WHITE else (
|
||||
min(bayes_mcts.get_moves().items(), key=lambda x: x[1])[0])
|
||||
best_move = max(self.mcts.get_moves().items(), key=lambda x: x[1])[0] if board.turn == chess.WHITE else (
|
||||
min(self.mcts.get_moves().items(), key=lambda x: x[1])[0])
|
||||
print(best_move)
|
||||
self.mcts.apply_move(best_move)
|
||||
return chess.engine.PlayResult(move=best_move, ponder=None)
|
||||
|
||||
|
||||
class ClassicMctsEngine(Engine):
|
||||
def __init__(self, color: chess.Color):
|
||||
super().__init__(color)
|
||||
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
|
||||
super().__init__(board, color, strategy)
|
||||
|
||||
@staticmethod
|
||||
def get_name() -> str:
|
||||
@@ -108,12 +121,12 @@ class ClassicMctsEngine(Engine):
|
||||
|
||||
|
||||
class RandomEngine(Engine):
|
||||
def __init__(self, color: chess.Color):
|
||||
super().__init__(color)
|
||||
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy):
|
||||
super().__init__(board, color, strategy)
|
||||
|
||||
@staticmethod
|
||||
def get_name() -> str:
|
||||
return "Random"
|
||||
return "RandomEngine"
|
||||
|
||||
def play(self, board: chess.Board, limit: Limit) -> chess.engine.PlayResult:
|
||||
move = random.choice(list(board.legal_moves))
|
||||
|
||||
@@ -21,11 +21,12 @@ class EvaluationResult:
|
||||
game: chess.pgn.Game
|
||||
|
||||
|
||||
def simulate_game(white: Engine, black: Engine, limit: Limit) -> chess.pgn.Game:
|
||||
board = chess.Board()
|
||||
|
||||
def simulate_game(white: Engine, black: Engine, limit: Limit, board: chess.Board) -> chess.pgn.Game:
|
||||
is_white_playing = True
|
||||
while not board.is_game_over():
|
||||
print("simulation board:\n", board)
|
||||
print()
|
||||
print("mcts board:\n", white.mcts.board)
|
||||
play_result = white.play(board, limit) if is_white_playing else black.play(board, limit)
|
||||
board.push(play_result.move)
|
||||
is_white_playing = not is_white_playing
|
||||
|
||||
16
chesspp/stockfish_strategy.py
Normal file
16
chesspp/stockfish_strategy.py
Normal file
@@ -0,0 +1,16 @@
|
||||
import chess
|
||||
from chesspp.i_strategy import IStrategy
|
||||
import chess.engine
|
||||
|
||||
|
||||
class StockFishStrategy(IStrategy):
|
||||
stockfish: chess.engine.SimpleEngine
|
||||
|
||||
def __init__(self):
|
||||
self.stockfish = chess.engine.SimpleEngine.popen_uci(
|
||||
"/home/luke/projects/pp-project/chess-engine-pp/stockfish/stockfish-ubuntu-x86-64-avx2")
|
||||
|
||||
def pick_next_move(self, board: chess.Board) -> chess.Move | None:
|
||||
move = self.stockfish.play(board, chess.engine.Limit(depth=4)).move
|
||||
print("stockfish picked:", move)
|
||||
return move
|
||||
@@ -1,10 +1,14 @@
|
||||
import os
|
||||
import asyncio
|
||||
import random
|
||||
|
||||
import aiohttp
|
||||
from aiohttp import web
|
||||
|
||||
import chess
|
||||
from chesspp import engine
|
||||
from chesspp.stockfish_strategy import StockFishStrategy
|
||||
from chesspp.random_strategy import RandomStrategy
|
||||
|
||||
_DIR = os.path.abspath(os.path.dirname(__file__))
|
||||
_DATA_DIR = os.path.abspath(os.path.join(_DIR, "static_data"))
|
||||
@@ -71,7 +75,8 @@ class WebInterface:
|
||||
|
||||
async def turns():
|
||||
""" Simulates the game and sends the response to the client """
|
||||
runner = Simulate(self.white(chess.WHITE), self.black(chess.BLACK)).run(limit)
|
||||
runner = Simulate(self.white(chess.Board(), chess.WHITE, RandomStrategy(random.Random())), self.black(
|
||||
chess.Board(), chess.BLACK, RandomStrategy(random.Random()))).run(limit)
|
||||
def sim():
|
||||
return next(runner, None)
|
||||
|
||||
@@ -100,4 +105,4 @@ class WebInterface:
|
||||
|
||||
if __name__ == '__main__':
|
||||
limit = engine.Limit(time=0.5)
|
||||
WebInterface(engine.ClassicMctsEngine, engine.ClassicMctsEngine, limit).run_app()
|
||||
WebInterface(engine.BayesMctsEngine, engine.ClassicMctsEngine, limit).run_app()
|
||||
|
||||
Reference in New Issue
Block a user