Refactor chesspp module with pyproject
This commit is contained in:
0
src/__init__.py
Normal file
0
src/__init__.py
Normal file
0
src/chesspp/__init__.py
Normal file
0
src/chesspp/__init__.py
Normal file
111
src/chesspp/classic_mcts.py
Normal file
111
src/chesspp/classic_mcts.py
Normal file
@@ -0,0 +1,111 @@
|
||||
import chess
|
||||
import random
|
||||
import numpy as np
|
||||
|
||||
|
||||
from chesspp import eval
|
||||
from chesspp import util
|
||||
|
||||
|
||||
class ClassicMcts:
|
||||
|
||||
def __init__(self, board: chess.Board, color: chess.Color, parent=None, move: chess.Move | None = None,
|
||||
random_state: int | None = None):
|
||||
self.random = random.Random(random_state)
|
||||
self.board = board
|
||||
self.color = color
|
||||
self.parent = parent
|
||||
self.move = move
|
||||
self.children = []
|
||||
self.visits = 0
|
||||
self.legal_moves = list(board.legal_moves)
|
||||
self.untried_actions = self.legal_moves
|
||||
self.score = 0
|
||||
|
||||
def _expand(self) -> 'ClassicMcts':
|
||||
"""
|
||||
Expands the node, i.e., choose an action and apply it to the board
|
||||
:return:
|
||||
"""
|
||||
move = self.random.choice(self.untried_actions)
|
||||
self.untried_actions.remove(move)
|
||||
next_board = self.board.copy()
|
||||
next_board.push(move)
|
||||
child_node = ClassicMcts(next_board, color=self.color, parent=self, move=move)
|
||||
self.children.append(child_node)
|
||||
return child_node
|
||||
|
||||
def _rollout(self, rollout_depth: int = 20) -> int:
|
||||
"""
|
||||
Rolls out the node by simulating a game for a given depth.
|
||||
Sometimes this step is called 'simulation' or 'playout'.
|
||||
:return: the score of the rolled out game
|
||||
"""
|
||||
copied_board = self.board.copy()
|
||||
steps = 1
|
||||
for i in range(rollout_depth):
|
||||
if copied_board.is_game_over():
|
||||
break
|
||||
|
||||
m = util.pick_move(copied_board)
|
||||
copied_board.push(m)
|
||||
steps += 1
|
||||
|
||||
return eval.score_manual(copied_board) // steps
|
||||
|
||||
def _backpropagate(self, score: float) -> None:
|
||||
"""
|
||||
Backpropagates the results of the rollout
|
||||
:param score:
|
||||
:return:
|
||||
"""
|
||||
self.visits += 1
|
||||
# TODO: maybe use score + num of moves together (a win in 1 move is better than a win in 20 moves)
|
||||
self.score += score
|
||||
if self.parent:
|
||||
self.parent._backpropagate(score)
|
||||
|
||||
def is_fully_expanded(self) -> bool:
|
||||
return len(self.untried_actions) == 0
|
||||
|
||||
def _best_child(self) -> 'ClassicMcts':
|
||||
"""
|
||||
Picks the best child according to our policy
|
||||
:return: the best child
|
||||
"""
|
||||
# NOTE: maybe clamp the score between [-1, +1] instead of [-inf, +inf]
|
||||
choices_weights = [(c.score / c.visits) + np.sqrt(((2 * np.log(self.visits)) / c.visits))
|
||||
for c in self.children]
|
||||
best_child_index = np.argmax(choices_weights) if self.color == chess.WHITE else np.argmin(choices_weights)
|
||||
return self.children[best_child_index]
|
||||
|
||||
def _select_leaf(self) -> 'ClassicMcts':
|
||||
"""
|
||||
Selects a leaf node.
|
||||
If the node is not expanded is will be expanded.
|
||||
:return: Leaf node
|
||||
"""
|
||||
current_node = self
|
||||
while not current_node.board.is_game_over():
|
||||
if not current_node.is_fully_expanded():
|
||||
return current_node._expand()
|
||||
else:
|
||||
current_node = current_node._best_child()
|
||||
|
||||
return current_node
|
||||
|
||||
def build_tree(self, samples: int = 1000) -> 'ClassicMcts':
|
||||
"""
|
||||
Runs the MCTS with the given number of samples
|
||||
:param samples: number of simulations
|
||||
:return: best node containing the best move
|
||||
"""
|
||||
for i in range(samples):
|
||||
# selection & expansion
|
||||
# rollout
|
||||
# backpropagate score
|
||||
node = self._select_leaf()
|
||||
score = node._rollout()
|
||||
node._backpropagate(score)
|
||||
|
||||
return self._best_child()
|
||||
61
src/chesspp/engine.py
Normal file
61
src/chesspp/engine.py
Normal file
@@ -0,0 +1,61 @@
|
||||
from abc import ABC, abstractmethod
|
||||
import chess
|
||||
import chess.engine
|
||||
import random
|
||||
|
||||
from chesspp.classic_mcts import ClassicMcts
|
||||
|
||||
|
||||
class Engine(ABC):
|
||||
color: chess.Color
|
||||
"""The side the engine plays (``chess.WHITE`` or ``chess.BLACK``)."""
|
||||
|
||||
def __init__(self, color: chess.Color):
|
||||
self.color = color
|
||||
|
||||
@abstractmethod
|
||||
def play(self, board: chess.Board) -> chess.engine.PlayResult:
|
||||
"""
|
||||
Return the next action the engine chooses based on the given board
|
||||
:param board: the chess board
|
||||
:return: the engine's PlayResult
|
||||
"""
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def get_name() -> str:
|
||||
"""
|
||||
Return the engine's name
|
||||
:return: the engine's name
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class ClassicMctsEngine(Engine):
|
||||
def __init__(self, color: chess.Color):
|
||||
super().__init__(color)
|
||||
|
||||
@staticmethod
|
||||
def get_name() -> str:
|
||||
return "ClassicMctsEngine"
|
||||
|
||||
def play(self, board: chess.Board) -> chess.engine.PlayResult:
|
||||
mcts_root = ClassicMcts(board, self.color)
|
||||
mcts_root.build_tree()
|
||||
best_move = max(mcts_root.children, key=lambda x: x.score).move if board.turn == chess.WHITE else (
|
||||
min(mcts_root.children, key=lambda x: x.score).move)
|
||||
return chess.engine.PlayResult(move=best_move, ponder=None)
|
||||
|
||||
|
||||
class RandomEngine(Engine):
|
||||
def __init__(self, color: chess.Color):
|
||||
super().__init__(color)
|
||||
|
||||
@staticmethod
|
||||
def get_name() -> str:
|
||||
return "Random"
|
||||
|
||||
def play(self, board: chess.Board) -> chess.engine.PlayResult:
|
||||
move = random.choice(list(board.legal_moves))
|
||||
return chess.engine.PlayResult(move=move, ponder=None)
|
||||
183
src/chesspp/eval.py
Normal file
183
src/chesspp/eval.py
Normal file
@@ -0,0 +1,183 @@
|
||||
import chess
|
||||
import chess.engine
|
||||
import sys
|
||||
|
||||
# Eval constants for scoring chess boards
|
||||
# Evaluation metric inspired by Tomasz Michniewski: https://www.chessprogramming.org/Simplified_Evaluation_Function
|
||||
|
||||
PIECE_VALUES = {
|
||||
chess.PAWN: 100,
|
||||
chess.KNIGHT: 320,
|
||||
chess.BISHOP: 330,
|
||||
chess.ROOK: 500,
|
||||
chess.QUEEN: 900,
|
||||
chess.KING: 20000
|
||||
}
|
||||
|
||||
pawn_eval = [
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
5, 10, 10, -20, -20, 10, 10, 5,
|
||||
5, -5, -10, 0, 0, -10, -5, 5,
|
||||
0, 0, 0, 20, 20, 0, 0, 0,
|
||||
5, 5, 10, 25, 25, 10, 5, 5,
|
||||
10, 10, 20, 30, 30, 20, 10, 10,
|
||||
50, 50, 50, 50, 50, 50, 50, 50,
|
||||
0, 0, 0, 0, 0, 0, 0, 0
|
||||
]
|
||||
knight_eval = [
|
||||
-50, -40, -30, -30, -30, -30, -40, -50,
|
||||
-40, -20, 0, 0, 0, 0, -20, -40,
|
||||
-30, 0, 10, 15, 15, 10, 0, -30,
|
||||
-30, 5, 15, 20, 20, 15, 5, -30,
|
||||
-30, 0, 15, 20, 20, 15, 0, -30,
|
||||
-30, 5, 10, 15, 15, 10, 5, -30,
|
||||
-40, -20, 0, 5, 5, 0, -20, -40,
|
||||
-50, -40, -30, -30, -30, -30, -40, -50
|
||||
]
|
||||
bishop_eval = [
|
||||
-20, -10, -10, -10, -10, -10, -10, -20,
|
||||
-10, 5, 0, 0, 0, 0, 5, -10,
|
||||
-10, 10, 10, 10, 10, 10, 10, -10,
|
||||
-10, 0, 10, 10, 10, 10, 0, -10,
|
||||
-10, 5, 5, 10, 10, 5, 5, -10,
|
||||
-10, 0, 5, 10, 10, 5, 0, -10,
|
||||
-10, 0, 0, 0, 0, 0, 0, -10,
|
||||
-20, -10, -10, -10, -10, -10, -10, -20
|
||||
]
|
||||
rook_eval = [
|
||||
0, 0, 0, 5, 5, 0, 0, 0,
|
||||
-5, 0, 0, 0, 0, 0, 0, -5,
|
||||
-5, 0, 0, 0, 0, 0, 0, -5,
|
||||
-5, 0, 0, 0, 0, 0, 0, -5,
|
||||
-5, 0, 0, 0, 0, 0, 0, -5,
|
||||
-5, 0, 0, 0, 0, 0, 0, -5,
|
||||
5, 10, 10, 10, 10, 10, 10, 5,
|
||||
0, 0, 0, 0, 0, 0, 0, 0
|
||||
]
|
||||
queen_eval = [
|
||||
-20, -10, -10, -5, -5, -10, -10, -20,
|
||||
-10, 0, 0, 0, 0, 0, 0, -10,
|
||||
-10, 0, 5, 5, 5, 5, 0, -10,
|
||||
-5, 0, 5, 5, 5, 5, 0, -5,
|
||||
0, 0, 5, 5, 5, 5, 0, -5,
|
||||
-10, 5, 5, 5, 5, 5, 0, -10,
|
||||
-10, 0, 5, 0, 0, 0, 0, -10,
|
||||
-20, -10, -10, -5, -5, -10, -10, -20
|
||||
]
|
||||
king_eval = [
|
||||
20, 30, 10, 0, 0, 10, 30, 20,
|
||||
20, 20, 0, 0, 0, 0, 20, 20,
|
||||
-10, -20, -20, -20, -20, -20, -20, -10,
|
||||
20, -30, -30, -40, -40, -30, -30, -20,
|
||||
-30, -40, -40, -50, -50, -40, -40, -30,
|
||||
-30, -40, -40, -50, -50, -40, -40, -30,
|
||||
-30, -40, -40, -50, -50, -40, -40, -30,
|
||||
-30, -40, -40, -50, -50, -40, -40, -30
|
||||
]
|
||||
king_endgame_eval = [
|
||||
50, -30, -30, -30, -30, -30, -30, -50,
|
||||
-30, -30, 0, 0, 0, 0, -30, -30,
|
||||
-30, -10, 20, 30, 30, 20, -10, -30,
|
||||
-30, -10, 30, 40, 40, 30, -10, -30,
|
||||
-30, -10, 30, 40, 40, 30, -10, -30,
|
||||
-30, -10, 20, 30, 30, 20, -10, -30,
|
||||
-30, -20, -10, 0, 0, -10, -20, -30,
|
||||
-50, -40, -30, -20, -20, -30, -40, -50
|
||||
]
|
||||
|
||||
PIECE_TABLES = {
|
||||
chess.WHITE: {
|
||||
chess.PAWN: pawn_eval,
|
||||
chess.KNIGHT: knight_eval,
|
||||
chess.BISHOP: bishop_eval,
|
||||
chess.ROOK: rook_eval,
|
||||
chess.QUEEN: queen_eval,
|
||||
chess.KING: king_eval,
|
||||
'end_game_king': king_endgame_eval
|
||||
},
|
||||
chess.BLACK: {
|
||||
chess.PAWN: list(reversed(pawn_eval)),
|
||||
chess.KNIGHT: list(reversed(knight_eval)),
|
||||
chess.BISHOP: list(reversed(bishop_eval)),
|
||||
chess.ROOK: list(reversed(rook_eval)),
|
||||
chess.QUEEN: list(reversed(queen_eval)),
|
||||
chess.KING: list(reversed(king_eval)),
|
||||
'end_game_king': list(reversed(king_endgame_eval))
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def check_endgame(board: chess.Board) -> bool:
|
||||
"""
|
||||
Endgame according to Tomasz Michniewski:
|
||||
1. Both sides have no queens or
|
||||
2. Every side which has a queen has additionally no other pieces or one minorpiece maximum.
|
||||
"""
|
||||
queens_white = 0
|
||||
minors_white = 0
|
||||
queens_black = 0
|
||||
minors_black = 0
|
||||
for s in chess.SQUARES:
|
||||
piece = board.piece_at(s)
|
||||
if piece is None:
|
||||
continue
|
||||
|
||||
if piece.piece_type == chess.QUEEN:
|
||||
if piece.color == chess.WHITE:
|
||||
queens_white += 1
|
||||
else:
|
||||
queens_black += 1
|
||||
|
||||
if piece.piece_type == chess.BISHOP or piece.piece_type == chess.KNIGHT:
|
||||
if piece.color == chess.WHITE:
|
||||
minors_white += 1
|
||||
else:
|
||||
minors_black += 1
|
||||
|
||||
return (queens_black == 0 and queens_white == 0) or ((queens_black >= 1 >= minors_black) or (
|
||||
queens_white >= 1 >= minors_white))
|
||||
|
||||
|
||||
def score_manual(board: chess.Board) -> int:
|
||||
"""
|
||||
Calculate the score of the given board regarding the given color
|
||||
:param board: the chess board
|
||||
:return: score metric
|
||||
"""
|
||||
outcome = board.outcome()
|
||||
if outcome is not None:
|
||||
if outcome.termination == chess.Termination.CHECKMATE:
|
||||
return sys.maxsize if outcome.winner == chess.WHITE else -sys.maxsize
|
||||
else: # draw
|
||||
return 0
|
||||
|
||||
score = 0
|
||||
for s in chess.SQUARES:
|
||||
piece = board.piece_at(s)
|
||||
if piece is None:
|
||||
continue
|
||||
|
||||
if piece.color == chess.WHITE:
|
||||
if piece.piece_type == chess.KING and check_endgame(board):
|
||||
score += PIECE_VALUES[piece.piece_type] * PIECE_TABLES[chess.WHITE]['end_game_king'][s]
|
||||
else:
|
||||
score += PIECE_VALUES[piece.piece_type] * PIECE_TABLES[chess.WHITE][piece.piece_type][s]
|
||||
else:
|
||||
if piece.piece_type == chess.KING and check_endgame(board):
|
||||
score -= PIECE_VALUES[piece.piece_type] * PIECE_TABLES[chess.BLACK]['end_game_king'][s]
|
||||
else:
|
||||
score -= PIECE_VALUES[piece.piece_type] * PIECE_TABLES[chess.BLACK][piece.piece_type][s]
|
||||
|
||||
return score
|
||||
|
||||
|
||||
def score_stockfish(board: chess.Board) -> chess.engine.PovScore:
|
||||
"""
|
||||
Calculate the score of the given board using stockfish
|
||||
:param board:
|
||||
:return:
|
||||
"""
|
||||
engine = chess.engine.SimpleEngine.popen_uci("./stockfish/stockfish-ubuntu-x86-64-avx2")
|
||||
info = engine.analyse(board, chess.engine.Limit(depth=0))
|
||||
engine.quit()
|
||||
return info["score"]
|
||||
51
src/chesspp/i_mcts.py
Normal file
51
src/chesspp/i_mcts.py
Normal file
@@ -0,0 +1,51 @@
|
||||
import chess
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict
|
||||
from chesspp.i_strategy import IStrategy
|
||||
|
||||
|
||||
class IMcts(ABC):
|
||||
|
||||
def __init__(self, board: chess.Board, strategy: IStrategy):
|
||||
self.board = board
|
||||
|
||||
@abstractmethod
|
||||
def sample(self, runs: int = 1000) -> None:
|
||||
"""
|
||||
Run the MCTS simulation
|
||||
:param runs: number of runs
|
||||
:return:
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def apply_move(self, move: chess.Move) -> None:
|
||||
"""
|
||||
Apply the move to the chess board
|
||||
:param move: move to apply
|
||||
:return:
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_children(self) -> list['IMcts']:
|
||||
"""
|
||||
Return the immediate children of the root node
|
||||
:return: list of immediate children of mcts root
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_moves(self) -> Dict[chess.Move, int]:
|
||||
"""
|
||||
Return all legal moves from this node with respective scores
|
||||
:return: dictionary with moves as key and scores as values
|
||||
"""
|
||||
pass
|
||||
|
||||
"""
|
||||
TODO: add score class:
|
||||
how many moves until the end of the game?
|
||||
score ranges?
|
||||
perspective of white/black
|
||||
"""
|
||||
8
src/chesspp/i_strategy.py
Normal file
8
src/chesspp/i_strategy.py
Normal file
@@ -0,0 +1,8 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
# TODO extend class
|
||||
class IStrategy(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def pick_next_move(self, ):
|
||||
pass
|
||||
21
src/chesspp/lichess-engine.py
Normal file
21
src/chesspp/lichess-engine.py
Normal file
@@ -0,0 +1,21 @@
|
||||
from lichess_bot.lib.engine_wrapper import MinimalEngine, MOVE
|
||||
import chess.engine
|
||||
|
||||
from chesspp import engine
|
||||
|
||||
|
||||
class ProbStockfish(MinimalEngine):
|
||||
def search(self, board: chess.Board, time_limit: chess.engine.Limit, ponder: bool, draw_offered: bool,
|
||||
root_moves: MOVE) -> chess.engine.PlayResult:
|
||||
moves = {}
|
||||
untried_moves = list(board.legal_moves)
|
||||
for move in untried_moves:
|
||||
mean, std = engine.simulate_game(board, move, 10)
|
||||
moves[move] = (mean, std)
|
||||
|
||||
return self.get_best_move(moves)
|
||||
|
||||
def get_best_move(self, moves: dict) -> chess.engine.PlayResult:
|
||||
best_avg = max(moves.items(), key=lambda m: m[1][0])
|
||||
next_move = best_avg[0]
|
||||
return chess.engine.PlayResult(next_move, None)
|
||||
72
src/chesspp/simulation.py
Normal file
72
src/chesspp/simulation.py
Normal file
@@ -0,0 +1,72 @@
|
||||
import multiprocessing as mp
|
||||
import random
|
||||
import chess
|
||||
import chess.pgn
|
||||
from typing import Tuple, List
|
||||
from enum import Enum
|
||||
from dataclasses import dataclass
|
||||
|
||||
from chesspp.engine import Engine
|
||||
|
||||
|
||||
class Winner(Enum):
|
||||
Engine_A = 0
|
||||
Engine_B = 1
|
||||
Draw = 2
|
||||
|
||||
|
||||
@dataclass
|
||||
class EvaluationResult:
|
||||
winner: Winner
|
||||
game: chess.pgn.Game
|
||||
|
||||
|
||||
def simulate_game(white: Engine, black: Engine) -> chess.pgn.Game:
|
||||
board = chess.Board()
|
||||
|
||||
is_white_playing = True
|
||||
while not board.is_game_over():
|
||||
play_result = white.play(board) if is_white_playing else black.play(board)
|
||||
board.push(play_result.move)
|
||||
is_white_playing = not is_white_playing
|
||||
|
||||
game = chess.pgn.Game.from_board(board)
|
||||
game.headers['White'] = white.get_name()
|
||||
game.headers['Black'] = black.get_name()
|
||||
return game
|
||||
|
||||
|
||||
class Evaluation:
|
||||
def __init__(self, engine_a: Engine.__class__, engine_b: Engine.__class__):
|
||||
self.engine_a = engine_a
|
||||
self.engine_b = engine_b
|
||||
|
||||
def run(self, n_games=100) -> List[EvaluationResult]:
|
||||
with mp.Pool(mp.cpu_count()) as pool:
|
||||
args = [(self.engine_a, self.engine_b) for i in range(n_games)]
|
||||
return pool.map(Evaluation._test_simulate, args)
|
||||
|
||||
@staticmethod
|
||||
def _test_simulate(arg: Tuple[Engine.__class__, Engine.__class__]) -> EvaluationResult:
|
||||
engine_a, engine_b = arg
|
||||
flip_engines = bool(random.getrandbits(1))
|
||||
if flip_engines:
|
||||
black, white = engine_a(chess.BLACK), engine_b(chess.WHITE)
|
||||
else:
|
||||
white, black = engine_a(chess.WHITE), engine_b(chess.BLACK)
|
||||
|
||||
game = simulate_game(white, black)
|
||||
winner = game.end().board().outcome().winner
|
||||
|
||||
result = Winner.Draw
|
||||
match (winner, flip_engines):
|
||||
case (chess.WHITE, True):
|
||||
result = Winner.Engine_B
|
||||
case (chess.BLACK, True):
|
||||
result = Winner.Engine_A
|
||||
case (chess.WHITE, False):
|
||||
result = Winner.Engine_A
|
||||
case (chess.BLACK, False):
|
||||
result = Winner.Engine_B
|
||||
|
||||
return EvaluationResult(result, game)
|
||||
79
src/chesspp/util.py
Normal file
79
src/chesspp/util.py
Normal file
@@ -0,0 +1,79 @@
|
||||
import chess
|
||||
import chess.engine
|
||||
from stockfish import Stockfish
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
|
||||
def pick_move(board: chess.Board) -> chess.Move | None:
|
||||
"""
|
||||
Pick a random move
|
||||
:param board: chess board
|
||||
:return: a valid move or None if no valid move available
|
||||
"""
|
||||
if len(list(board.legal_moves)) == 0:
|
||||
return None
|
||||
return random.choice(list(board.legal_moves))
|
||||
|
||||
|
||||
def simulate_game(board: chess.Board, move: chess.Move, depth: int):
|
||||
"""
|
||||
Simulate a game starting with the given move
|
||||
:param board: chess board
|
||||
:param move: chosen move
|
||||
:param depth: number of moves that should be simulated after playing the chosen move
|
||||
:return: the score for the simulated game
|
||||
"""
|
||||
engine = chess.engine.SimpleEngine.popen_uci("./stockfish/stockfish-ubuntu-x86-64-avx2")
|
||||
board.push(move)
|
||||
for i in range(depth):
|
||||
if board.is_game_over():
|
||||
engine.quit()
|
||||
return
|
||||
r = engine.play(board, chess.engine.Limit(depth=2))
|
||||
board.push(r.move)
|
||||
|
||||
engine.quit()
|
||||
|
||||
|
||||
def simulate_stockfish_prob(board: chess.Board, move: chess.Move, games: int = 10, depth: int = 10) -> (float, float):
|
||||
"""
|
||||
Simulate a game using
|
||||
:param board: chess board
|
||||
:param move: chosen move
|
||||
:param games: number of games that should be simulated after playing the move
|
||||
:param depth: simulation depth per game
|
||||
:return:
|
||||
"""
|
||||
board.push(move)
|
||||
copied_board = board.copy()
|
||||
scores = []
|
||||
|
||||
stockfish = Stockfish("./stockfish/stockfish-ubuntu-x86-64-avx2", depth=2, parameters={"Threads": 8, "Hash": 2048})
|
||||
stockfish.set_elo_rating(1200)
|
||||
stockfish.set_fen_position(board.fen())
|
||||
|
||||
def reset_game():
|
||||
nonlocal scores, copied_board, board
|
||||
score = eval.score_stockfish(copied_board).white().score(mate_score=100_000)
|
||||
scores.append(score)
|
||||
copied_board = board.copy()
|
||||
stockfish.set_fen_position(board.fen())
|
||||
|
||||
for _ in range(games):
|
||||
for d in range(depth):
|
||||
if copied_board.is_game_over() or d == depth - 1:
|
||||
reset_game()
|
||||
break
|
||||
|
||||
if d == depth - 1:
|
||||
reset_game()
|
||||
|
||||
top_moves = stockfish.get_top_moves(3)
|
||||
chosen_move = random.choice(top_moves)['Move']
|
||||
stockfish.make_moves_from_current_position([chosen_move])
|
||||
copied_board.push(chess.Move.from_uci(chosen_move))
|
||||
|
||||
print(scores)
|
||||
# TODO: return distribution here?
|
||||
return np.array(scores).mean(), np.array(scores).std()
|
||||
Reference in New Issue
Block a user