remove pre-py38 type annotations
This commit is contained in:
@@ -1,24 +1,27 @@
|
||||
import math
|
||||
from typing import Tuple, Dict
|
||||
from functools import cache
|
||||
|
||||
import torch
|
||||
import torch.distributions as dist
|
||||
from torch import exp
|
||||
|
||||
F1: Dict[float, float] = {}
|
||||
F2: Dict[float, float] = {}
|
||||
CDF: Dict[float, float] = {}
|
||||
lookup_count = 0
|
||||
total_count = 0
|
||||
calculation_count = 0
|
||||
|
||||
|
||||
def get_lookup_count():
|
||||
global lookup_count
|
||||
return lookup_count
|
||||
global total_count, calculation_count
|
||||
return total_count - calculation_count
|
||||
|
||||
|
||||
@cache
|
||||
def calc_cdf(alpha: float) -> Tuple[float, float, float]:
|
||||
def calc_cdf(alpha: float) -> tuple[float, float, float]:
|
||||
"""
|
||||
Returns the calculated CDF and parameters f1,f2 from the input alpha
|
||||
"""
|
||||
global calculation_count
|
||||
calculation_count += 1
|
||||
|
||||
normal = dist.Normal(0, 1)
|
||||
cdf_alpha = normal.cdf(torch.tensor(alpha)).item()
|
||||
pdf_alpha = exp(normal.log_prob(torch.tensor(alpha))).item()
|
||||
@@ -27,12 +30,8 @@ def calc_cdf(alpha: float) -> Tuple[float, float, float]:
|
||||
1 - 2 * cdf_alpha) * alpha * pdf_alpha - pdf_alpha ** 2
|
||||
return cdf_alpha, f1, f2
|
||||
|
||||
def max_gaussian(mu1, sigma1, mu2, sigma2) -> Tuple[float, float]:
|
||||
global lookup_count
|
||||
global F1
|
||||
global F2
|
||||
global CDF
|
||||
|
||||
def max_gaussian(mu1, sigma1, mu2, sigma2) -> tuple[float, float]:
|
||||
"""
|
||||
Returns the combined max gaussian of two Gaussians represented by mu1, sigma1, mu2, simga2
|
||||
:param mu1: mu of the first Gaussian
|
||||
@@ -41,10 +40,15 @@ def max_gaussian(mu1, sigma1, mu2, sigma2) -> Tuple[float, float]:
|
||||
:param sigma2: sigma of the second Gaussian
|
||||
:return: mu and sigma maximized
|
||||
"""
|
||||
global total_count
|
||||
total_count += 1
|
||||
|
||||
# we assume independence of the two gaussians
|
||||
# print(mu1, sigma1, mu2, sigma2)
|
||||
# normal = dist.Normal(0, 1)
|
||||
sigma_m = math.sqrt(sigma1 ** 2 + sigma2 ** 2)
|
||||
|
||||
# round to two significant digits to enable float lookup
|
||||
alpha = round((mu1 - mu2) / sigma_m, 2)
|
||||
|
||||
cdf_alpha, f1_alpha, f2_alpha = calc_cdf(alpha)
|
||||
@@ -75,13 +79,13 @@ def min_gaussian(mu1, sigma1, mu2, sigma2) -> tuple[float, float]:
|
||||
pdf_alpha_neg = exp(normal.log_prob(torch.tensor(-alpha))).item()
|
||||
|
||||
mu = mu1 * (1 - cdf_alpha) + mu2 * cdf_alpha - pdf_alpha_neg * sigma_m
|
||||
sigma = math.sqrt((mu1**2 + sigma1**2) * (1 - cdf_alpha) + (mu2**2 + sigma2**2) * cdf_alpha - (mu1 + mu2) * sigma_m * pdf_alpha - mu**2)
|
||||
sigma = math.sqrt((mu1 ** 2 + sigma1 ** 2) * (1 - cdf_alpha) + (mu2 ** 2 + sigma2 ** 2) * cdf_alpha - (
|
||||
mu1 + mu2) * sigma_m * pdf_alpha - mu ** 2)
|
||||
return mu, sigma
|
||||
except ValueError:
|
||||
print(mu1, sigma1, mu2, sigma2)
|
||||
|
||||
|
||||
|
||||
def beta_mean(alpha, beta):
|
||||
return alpha / (alpha + beta)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user