added mcts and strategy base classes
This commit is contained in:
@@ -2,32 +2,13 @@ import chess
|
||||
import random
|
||||
import eval
|
||||
import engine
|
||||
import IStrategy
|
||||
import numpy as np
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
|
||||
class IMcts(ABC):
|
||||
class ClassicMcts:
|
||||
|
||||
def __init__(self, board: chess.Board, strategy: IStrategy):
|
||||
self.board = board
|
||||
|
||||
@abstractmethod
|
||||
def sample(self, runs: int = 1000) -> None:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def apply_move(self, move: chess.Move) -> None:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_children(self) -> list['Mcts']:
|
||||
pass
|
||||
|
||||
|
||||
class MCTSNode:
|
||||
|
||||
def __init__(self, board: chess.Board, parent = None, move: chess.Move | None = None, random_state: int | None = None):
|
||||
def __init__(self, board: chess.Board, parent=None, move: chess.Move | None = None,
|
||||
random_state: int | None = None):
|
||||
self.random = random.Random(random_state)
|
||||
self.board = board
|
||||
self.parent = parent
|
||||
@@ -38,7 +19,7 @@ class MCTSNode:
|
||||
self.untried_actions = self.legal_moves
|
||||
self.score = 0
|
||||
|
||||
def _expand(self) -> 'MCTSNode':
|
||||
def _expand(self) -> 'ClassicMcts':
|
||||
"""
|
||||
Expands the node, i.e., choose an action and apply it to the board
|
||||
:return:
|
||||
@@ -47,7 +28,7 @@ class MCTSNode:
|
||||
self.untried_actions.remove(move)
|
||||
next_board = self.board.copy()
|
||||
next_board.push(move)
|
||||
child_node = MCTSNode(next_board, parent=self, move=move)
|
||||
child_node = ClassicMcts(next_board, parent=self, move=move)
|
||||
self.children.append(child_node)
|
||||
return child_node
|
||||
|
||||
@@ -84,7 +65,7 @@ class MCTSNode:
|
||||
def is_fully_expanded(self) -> bool:
|
||||
return len(self.untried_actions) == 0
|
||||
|
||||
def _best_child(self) -> 'MCTSNode':
|
||||
def _best_child(self) -> 'ClassicMcts':
|
||||
"""
|
||||
Picks the best child according to our policy
|
||||
:return: the best child
|
||||
@@ -94,7 +75,7 @@ class MCTSNode:
|
||||
for c in self.children]
|
||||
return self.children[np.argmax(choices_weights)]
|
||||
|
||||
def _select_leaf(self) -> 'MCTSNode':
|
||||
def _select_leaf(self) -> 'ClassicMcts':
|
||||
"""
|
||||
Selects a leaf node.
|
||||
If the node is not expanded is will be expanded.
|
||||
@@ -109,7 +90,7 @@ class MCTSNode:
|
||||
|
||||
return current_node
|
||||
|
||||
def build_tree(self, samples: int = 1000) -> 'MCTSNode':
|
||||
def build_tree(self, samples: int = 1000) -> 'ClassicMcts':
|
||||
"""
|
||||
Runs the MCTS with the given number of samples
|
||||
:param samples: number of simulations
|
||||
|
||||
5
eval.py
5
eval.py
@@ -134,7 +134,8 @@ def check_endgame(board: chess.Board) -> bool:
|
||||
else:
|
||||
minors_black += 1
|
||||
|
||||
return (queens_black == 0 and queens_white == 0) or ((queens_black >= 1 and minors_black <= 1) or (queens_white >= 1 and minors_white <= 1))
|
||||
return (queens_black == 0 and queens_white == 0) or ((queens_black >= 1 >= minors_black) or (
|
||||
queens_white >= 1 >= minors_white))
|
||||
|
||||
|
||||
def score_manual(board: chess.Board) -> int:
|
||||
@@ -177,6 +178,6 @@ def score_stockfish(board: chess.Board) -> chess.engine.PovScore:
|
||||
:return:
|
||||
"""
|
||||
engine = chess.engine.SimpleEngine.popen_uci("./stockfish/stockfish-ubuntu-x86-64-avx2")
|
||||
info = engine.analyse(board, chess.engine.Limit(depth=2))
|
||||
info = engine.analyse(board, chess.engine.Limit(depth=0))
|
||||
engine.quit()
|
||||
return info["score"]
|
||||
|
||||
16
i_mcts.py
16
i_mcts.py
@@ -1,6 +1,6 @@
|
||||
import chess
|
||||
from abc import ABC, abstractmethod
|
||||
from IStrategy import IStrategy
|
||||
from i_strategy import IStrategy
|
||||
|
||||
|
||||
class IMcts(ABC):
|
||||
@@ -10,12 +10,26 @@ class IMcts(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def sample(self, runs: int = 1000) -> None:
|
||||
"""
|
||||
Run the MCTS simulation
|
||||
:param runs: number of runs
|
||||
:return:
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def apply_move(self, move: chess.Move) -> None:
|
||||
"""
|
||||
Apply the move to the chess board
|
||||
:param move: move to apply
|
||||
:return:
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_children(self) -> list['Mcts']:
|
||||
"""
|
||||
Return the immediate children of the root node
|
||||
:return: list of immediate children of mcts root
|
||||
"""
|
||||
pass
|
||||
|
||||
@@ -9,7 +9,7 @@ class ProbStockfish(MinimalEngine):
|
||||
moves = {}
|
||||
untried_moves = list(board.legal_moves)
|
||||
for move in untried_moves:
|
||||
mean, std = engine.simulate_stockfish_prob(board, move, 10, 4)
|
||||
mean, std = engine.simulate_game(board, move, 10)
|
||||
moves[move] = (mean, std)
|
||||
|
||||
return self.get_best_move(moves)
|
||||
|
||||
4
main.py
4
main.py
@@ -1,6 +1,6 @@
|
||||
import chess
|
||||
import chess.engine
|
||||
from mcts import MCTSNode
|
||||
from classic_mcts import ClassicMcts
|
||||
import engine
|
||||
import eval
|
||||
|
||||
@@ -8,7 +8,7 @@ import eval
|
||||
def test_mcts():
|
||||
fools_mate = "rnbqkbnr/pppp1ppp/4p3/8/5PP1/8/PPPPP2P/RNBQKBNR b KQkq f3 0 2"
|
||||
board = chess.Board(fools_mate)
|
||||
mcts_root = MCTSNode(board)
|
||||
mcts_root = ClassicMcts(board)
|
||||
mcts_root.build_tree()
|
||||
sorted_moves = sorted(mcts_root.children, key=lambda x: x.move.uci())
|
||||
for c in sorted_moves:
|
||||
|
||||
Reference in New Issue
Block a user