Create folder mcts for all mcts related files

This commit is contained in:
2024-01-30 17:33:22 +01:00
parent c3e3ad42f7
commit 3f18d0a0d5
6 changed files with 5 additions and 5 deletions

0
chesspp/mcts/__init__.py Normal file
View File

View File

@@ -0,0 +1,183 @@
import math
import torch.distributions as dist
from chesspp.mcts.i_mcts import *
from chesspp.i_strategy import IStrategy
from chesspp.util_gaussian import gaussian_ucb1, max_gaussian, min_gaussian
class BayesianMctsNode(IMctsNode):
def __init__(self, board: chess.Board, strategy: IStrategy, color: chess.Color, parent: Self | None,
move: chess.Move | None,
random_state: random.Random, inherit_result: int | None = None, depth: int = 0, visits: int = 0):
super().__init__(board, strategy, parent, move, random_state)
self.color = color # Color of the player whose turn it is
self.visits = visits
self.result = inherit_result if inherit_result is not None else 0
self._set_mu_sigma()
self.depth = depth
def _create_child(self, move: chess.Move) -> IMctsNode:
copied_board = self.board.copy()
copied_board.push(move)
return BayesianMctsNode(copied_board, self.strategy, not self.color, self, move, self.random_state, self.result,
self.depth + 1)
def _set_mu_sigma(self) -> None:
self.mu = self.result
self.sigma = 1
def _is_new_ucb1_better(self, current, new) -> bool:
if self.color == chess.WHITE:
# maximize ucb1
return new > current
else:
# minimize ubc1
return new < current
def _select_best_child(self) -> IMctsNode:
"""
Returns the child with the *best* ucb1 score.
It chooses the child with maximum ucb1 for WHITE, and with minimum ucb1 for BLACK.
"""
if self.board.is_game_over():
return self
best_child = self.random_state.choice(self.children)
best_ucb1 = gaussian_ucb1(best_child.mu, best_child.sigma, self.visits)
for child in self.children:
# if child has no visits, prioritize this child.
if child.visits == 0:
best_child = child
break
# save child if it has a *better* score, than our previous best child.
ucb1 = gaussian_ucb1(child.mu, child.sigma, self.visits)
if self._is_new_ucb1_better(best_ucb1, ucb1):
best_ucb1 = ucb1
best_child = child
return best_child
def update_depth(self, depth: int) -> None:
self.depth = depth
for c in self.children:
c.update_depth(depth + 1)
def select(self) -> IMctsNode:
if len(self.children) == 0 or self.board.is_game_over():
return self
return self._select_best_child().select()
def expand(self) -> IMctsNode:
if self.visits == 0:
return self
for move in self.legal_moves:
self.children.append(self._create_child(move))
return self._select_best_child()
def rollout(self, rollout_depth: int = 4) -> int:
copied_board = self.board.copy()
steps = self.depth
for i in range(rollout_depth):
if copied_board.is_game_over():
break
m = self.strategy.pick_next_move(copied_board)
if m is None:
break
copied_board.push(m)
steps += 1
steps = max(1, steps)
score = int(self.strategy.analyze_board(copied_board) / (math.log2(steps) + 1))
self.result = score
return score
def _combine_gaussians(self, mu1: float, sigma1: float, mu2: float, sigma2: float) -> tuple[float, float]:
if self.color == chess.WHITE:
return max_gaussian(mu1, sigma1, mu2, sigma2)
else:
return min_gaussian(mu1, sigma1, mu2, sigma2)
def backpropagate(self, score: int | None = None) -> None:
self.visits += 1
if score is not None:
self.result = score
if len(self.children) == 0:
# leaf node
self._set_mu_sigma()
else:
# interior node
shuffled_children = self.random_state.sample(self.children, len(self.children))
mu = shuffled_children[0].mu
sigma = shuffled_children[0].sigma
for c in shuffled_children[1:]:
mu, sigma = self._combine_gaussians(mu, sigma, c.mu, c.sigma)
# if max_sigma == 0:
# max_sigma = 0.001
self.mu = mu
self.sigma = sigma
if self.parent:
self.parent.backpropagate()
def print(self, indent=0):
print("\t" * indent + f"move={self.move}, visits={self.visits}, mu={self.mu}, sigma={self.sigma}")
for c in self.children:
c.print(indent + 1)
class BayesianMcts(IMcts):
def __init__(self, board: chess.Board, strategy: IStrategy, color: chess.Color, seed: int | None = None):
super().__init__(board, strategy, seed)
self.root = BayesianMctsNode(board, strategy, color, None, None, self.random_state, visits=1)
self.color = color
def sample(self, runs: int = 1000) -> None:
for i in range(runs):
if self.board.is_game_over():
break
leaf_node = self.root.select().expand()
_ = leaf_node.rollout()
leaf_node.backpropagate()
def apply_move(self, move: chess.Move) -> None:
self.board.push(move)
self.color = self.board.turn
# if a child node contains the move, set this child as new root
for child in self.get_children():
if child.move == move:
self.root = child
child.depth = 0
self.root.parent = None
self.root.update_depth(0)
self.root.visits = 1
return
# if no child node contains the move, initialize a new tree.
self.root = BayesianMctsNode(self.board, self.root.strategy, self.color, None, None, self.random_state, visits=1)
def get_children(self) -> list[IMctsNode]:
return self.root.children
def get_moves(self) -> Dict[chess.Move, dist.Normal]:
res = {}
for c in self.root.children:
res[c.move] = dist.Normal(c.mu, c.sigma)
return res
def print(self):
print("================================")
self.root.print()

View File

@@ -0,0 +1,109 @@
import chess
import random
import numpy as np
from chesspp.i_strategy import IStrategy
class ClassicMcts:
def __init__(self, board: chess.Board, color: chess.Color, strategy: IStrategy, parent=None, move: chess.Move | None = None,
random_state: int | None = None):
self.random = random.Random(random_state)
self.board = board
self.color = color
self.strategy = strategy
self.parent = parent
self.move = move
self.children = []
self.visits = 0
self.legal_moves = list(board.legal_moves)
self.untried_actions = self.legal_moves
self.score = 0
def _expand(self) -> 'ClassicMcts':
"""
Expands the node, i.e., choose an action and apply it to the board
:return:
"""
move = self.random.choice(self.untried_actions)
self.untried_actions.remove(move)
next_board = self.board.copy()
next_board.push(move)
child_node = ClassicMcts(next_board, color=self.color, strategy=self.strategy, parent=self, move=move)
self.children.append(child_node)
return child_node
def _rollout(self, rollout_depth: int = 4) -> int:
"""
Rolls out the node by simulating a game for a given depth.
Sometimes this step is called 'simulation' or 'playout'.
:return: the score of the rolled out game
"""
copied_board = self.board.copy()
steps = 1
for i in range(rollout_depth):
if copied_board.is_game_over():
break
m = self.strategy.pick_next_move(copied_board)
copied_board.push(m)
steps += 1
return self.strategy.analyze_board(copied_board) // steps
def _backpropagate(self, score: float) -> None:
"""
Backpropagates the results of the rollout
:param score:
:return:
"""
self.visits += 1
# TODO: maybe use score + num of moves together (a win in 1 move is better than a win in 20 moves)
self.score += score
if self.parent:
self.parent._backpropagate(score)
def is_fully_expanded(self) -> bool:
return len(self.untried_actions) == 0
def _best_child(self) -> 'ClassicMcts':
"""
Picks the best child according to our policy
:return: the best child
"""
# NOTE: maybe clamp the score between [-1, +1] instead of [-inf, +inf]
choices_weights = [(c.score / c.visits) + np.sqrt(((2 * np.log(self.visits)) / c.visits))
for c in self.children]
best_child_index = np.argmax(choices_weights) if self.color == chess.WHITE else np.argmin(choices_weights)
return self.children[best_child_index]
def _select_leaf(self) -> 'ClassicMcts':
"""
Selects a leaf node.
If the node is not expanded is will be expanded.
:return: Leaf node
"""
current_node = self
while not current_node.board.is_game_over():
if not current_node.is_fully_expanded():
return current_node._expand()
else:
current_node = current_node._best_child()
return current_node
def build_tree(self, samples: int = 1000) -> 'ClassicMcts':
"""
Runs the MCTS with the given number of samples
:param samples: number of simulations
:return: best node containing the best move
"""
for i in range(samples):
# selection & expansion
# rollout
# backpropagate score
node = self._select_leaf()
score = node._rollout()
node._backpropagate(score)
return self._best_child()

107
chesspp/mcts/i_mcts.py Normal file
View File

@@ -0,0 +1,107 @@
import chess
import random
from abc import ABC, abstractmethod
from typing import Dict, Self
from chesspp.i_strategy import IStrategy
class IMctsNode(ABC):
def __init__(self, board: chess.Board, strategy: IStrategy, parent: Self | None, move: chess.Move | None,
random_state: random.Random):
self.board = board
self.strategy = strategy
self.parent = parent
self.children = []
self.move = move
self.legal_moves = list(board.legal_moves)
self.random_state = random_state
self.depth = 0
@abstractmethod
def select(self) -> Self:
"""
Selects the next node leaf node in the tree
:return:
"""
pass
@abstractmethod
def expand(self) -> Self:
"""
Expands this node creating X child leaf nodes, i.e., choose an action and apply it to the board
:return:
"""
pass
@abstractmethod
def rollout(self, rollout_depth: int = 20) -> int:
"""
Rolls out the node by simulating a game for a given depth.
Sometimes this step is called 'simulation' or 'playout'.
:return: the score of the rolled out game
"""
pass
@abstractmethod
def backpropagate(self, score: float) -> None:
"""
Backpropagates the results of the rollout
:param score:
:return:
"""
pass
def update_depth(self, depth: int) -> None:
"""
Recursively updates the depth the current node and all it's children
:param depth: new depth for current node
:return:
"""
class IMcts(ABC):
def __init__(self, board: chess.Board, strategy: IStrategy, seed: int | None):
self.board = board
self.strategy = strategy
self.random_state = random.Random(seed)
@abstractmethod
def sample(self, runs: int = 1000) -> None:
"""
Run the MCTS simulation
:param runs: number of runs
:return:
"""
pass
@abstractmethod
def apply_move(self, move: chess.Move) -> None:
"""
Apply the move to the chess board
:param move: move to apply
:return:
"""
pass
@abstractmethod
def get_children(self) -> list[IMctsNode]:
"""
Return the immediate children of the root node
:return: list of immediate children of mcts root
"""
pass
@abstractmethod
def get_moves(self) -> Dict[chess.Move, int]:
"""
Return all legal moves from this node with respective scores
:return: dictionary with moves as key and scores as values
"""
pass
"""
TODO: add score class:
how many moves until the end of the game?
score ranges?
perspective of white/black
"""