run games on same core for --proc 1

This commit is contained in:
2024-01-30 16:11:44 +01:00
committed by Stefan Steininger
parent 15ce6c5316
commit 2e3fdb62e9
3 changed files with 34 additions and 34 deletions

View File

@@ -48,11 +48,15 @@ class Evaluation:
def run(self, n_games=100, proc=mp.cpu_count()) -> List[EvaluationResult]:
proc = min(proc, mp.cpu_count())
with mp.Pool(proc) as pool:
args = [(self.engine_a, self.strategy_a, self.engine_b, self.strategy_b, self.limit, self.stockfish_path, self.lc0_path) for i
in
range(n_games)]
return pool.map(Evaluation._test_simulate, args)
arg = (self.engine_a, self.strategy_a, self.engine_b, self.strategy_b, self.limit, self.stockfish_path, self.lc0_path)
if proc > 1:
with mp.Pool(proc) as pool:
args = [arg for i in range(n_games)]
return pool.map(Evaluation._test_simulate, args)
return [
Evaluation._test_simulate(arg)
for _ in range(n_games)
]
@staticmethod
def _test_simulate(arg: Tuple[EngineEnum, StrategyEnum, EngineEnum, StrategyEnum, Limit, str, str]) -> EvaluationResult:

View File

@@ -1,12 +1,14 @@
import math
from typing import Tuple, Dict
from functools import cache
import torch
import torch.distributions as dist
from torch import exp
F1: dict[float, float] = {}
F2: dict[float, float] = {}
CDF: dict[float, float] = {}
F1: Dict[float, float] = {}
F2: Dict[float, float] = {}
CDF: Dict[float, float] = {}
lookup_count = 0
@@ -15,7 +17,17 @@ def get_lookup_count():
return lookup_count
def max_gaussian(mu1, sigma1, mu2, sigma2) -> tuple[float, float]:
@cache
def calc_cdf(alpha: float) -> Tuple[float, float, float]:
normal = dist.Normal(0, 1)
cdf_alpha = normal.cdf(torch.tensor(alpha)).item()
pdf_alpha = exp(normal.log_prob(torch.tensor(alpha))).item()
f1 = alpha * cdf_alpha + pdf_alpha
f2 = alpha ** 2 * cdf_alpha * (1 - cdf_alpha) + (
1 - 2 * cdf_alpha) * alpha * pdf_alpha - pdf_alpha ** 2
return cdf_alpha, f1, f2
def max_gaussian(mu1, sigma1, mu2, sigma2) -> Tuple[float, float]:
global lookup_count
global F1
global F2
@@ -31,33 +43,11 @@ def max_gaussian(mu1, sigma1, mu2, sigma2) -> tuple[float, float]:
"""
# we assume independence of the two gaussians
#print(mu1, sigma1, mu2, sigma2)
normal = dist.Normal(0, 1)
#normal = dist.Normal(0, 1)
sigma_m = math.sqrt(sigma1 ** 2 + sigma2 ** 2)
alpha = (mu1 - mu2) / sigma_m
alpha = round((mu1 - mu2) / sigma_m, 2)
if alpha in CDF:
cdf_alpha = CDF[alpha]
lookup_count += 1
else:
cdf_alpha = normal.cdf(torch.tensor(alpha)).item()
CDF[alpha] = cdf_alpha
pdf_alpha = exp(normal.log_prob(torch.tensor(alpha))).item()
if alpha in F1:
f1_alpha = F1[alpha]
lookup_count += 1
else:
f1_alpha = alpha * cdf_alpha + pdf_alpha
F1[alpha] = f1_alpha
if alpha in F2:
f2_alpha = F2[alpha]
lookup_count += 1
else:
f2_alpha = alpha ** 2 * cdf_alpha * (1 - cdf_alpha) + (
1 - 2 * cdf_alpha) * alpha * pdf_alpha - pdf_alpha ** 2
F2[alpha] = f2_alpha
cdf_alpha, f1_alpha, f2_alpha = calc_cdf(alpha)
mu = mu2 + sigma_m * f1_alpha
sigma = math.sqrt(sigma2 ** 2 + (sigma1 ** 2 - sigma2 ** 2) * cdf_alpha + sigma_m ** 2 * f2_alpha)

View File

@@ -1,4 +1,5 @@
import random
import sys
import time
import chess
import chess.engine
@@ -158,3 +159,8 @@ def main():
if __name__ == '__main__':
main()
# Note: prevent endless wait on StockFish process
# by allowing for cleanup of objects (which closes stockfish)
import gc
gc.collect()