Added basic bayes-mcts using beta distribution
This commit is contained in:
145
src/chesspp/baysian_mcts.py
Normal file
145
src/chesspp/baysian_mcts.py
Normal file
@@ -0,0 +1,145 @@
|
||||
import chess
|
||||
from src.chesspp.i_mcts import *
|
||||
from src.chesspp.i_strategy import IStrategy
|
||||
from src.chesspp.util_gaussian import gaussian_ucb1, max_gaussian, beta_std, beta_mean
|
||||
from src.chesspp.eval import *
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
|
||||
class BayesianMctsNode(IMctsNode):
|
||||
def __init__(self, board: chess.Board, strategy: IStrategy, parent: Self | None, move: chess.Move | None,
|
||||
random_state: random.Random, inherit_results: list[int] | None = None):
|
||||
super().__init__(board, strategy, parent, move, random_state)
|
||||
self.visits = 0
|
||||
self.results = inherit_results.copy() if inherit_results is not None else [1, 1]
|
||||
|
||||
self._set_mu_sigma()
|
||||
|
||||
def _create_child(self, move: chess.Move):
|
||||
copied_board = self.board.copy()
|
||||
copied_board.push(move)
|
||||
return BayesianMctsNode(copied_board, self.strategy, self, move, self.random_state, inherit_results=self.results)
|
||||
|
||||
def _set_mu_sigma(self):
|
||||
alpha = self.results[0]
|
||||
beta = self.results[1]
|
||||
|
||||
self.mu = beta_mean(alpha, beta)
|
||||
self.sigma = beta_std(alpha, beta)
|
||||
|
||||
def _select_child(self) -> IMctsNode:
|
||||
# select child by modified UCB1
|
||||
if self.board.is_game_over():
|
||||
return self
|
||||
|
||||
best_child = self.random_state.choice(self.children)
|
||||
best_val = gaussian_ucb1(best_child.mu, best_child.sigma, self.visits)
|
||||
for c in self.children:
|
||||
g = gaussian_ucb1(c.mu, c.sigma, self.visits)
|
||||
|
||||
if g > best_val:
|
||||
best_val = g
|
||||
best_child = c
|
||||
return best_child
|
||||
|
||||
def select(self) -> IMctsNode:
|
||||
if len(self.children) == 0:
|
||||
return self
|
||||
else:
|
||||
return self._select_child().select()
|
||||
|
||||
def expand(self) -> IMctsNode:
|
||||
if self.visits == 0:
|
||||
return self
|
||||
|
||||
for move in self.legal_moves:
|
||||
self.children.append(self._create_child(move))
|
||||
|
||||
return self._select_child()
|
||||
|
||||
def rollout(self, rollout_depth: int = 20) -> int:
|
||||
copied_board = self.board.copy()
|
||||
steps = 1
|
||||
for i in range(rollout_depth):
|
||||
if copied_board.is_game_over():
|
||||
break
|
||||
|
||||
m = self.strategy.pick_next_move(copied_board)
|
||||
if m is None:
|
||||
break
|
||||
|
||||
copied_board.push(m)
|
||||
steps += 1
|
||||
|
||||
score = eval.score_manual(copied_board) // steps
|
||||
if score > 0:
|
||||
self.results[1] += 1
|
||||
else:
|
||||
self.results[0] += abs(score) // 50_000
|
||||
return score
|
||||
|
||||
def backpropagate(self, score: int | None = None) -> None:
|
||||
self.visits += 1
|
||||
|
||||
if score is not None:
|
||||
self.results.append(score)
|
||||
|
||||
if len(self.children) == 0:
|
||||
# leaf node
|
||||
self._set_mu_sigma()
|
||||
else:
|
||||
# interior node
|
||||
shuffled_children = self.random_state.sample(self.children, len(self.children))
|
||||
max_mu = shuffled_children[0].mu
|
||||
max_sigma = shuffled_children[0].sigma
|
||||
for c in shuffled_children[1:]:
|
||||
max_mu, max_sigma = max_gaussian(max_mu, max_sigma, c.mu, c.sigma)
|
||||
|
||||
if max_sigma == 0:
|
||||
max_sigma = 0.001
|
||||
self.mu = max_mu
|
||||
self.sigma = max_sigma
|
||||
|
||||
if self.parent:
|
||||
self.parent.backpropagate()
|
||||
|
||||
def print(self, indent=0):
|
||||
print("\t"*indent + f"visits={self.visits}, mu={self.mu}, sigma={self.sigma}")
|
||||
for c in self.children:
|
||||
c.print(indent+1)
|
||||
|
||||
|
||||
class BayesianMcts(IMcts):
|
||||
def __init__(self, board: chess.Board, strategy: IStrategy, seed: int | None = None):
|
||||
super().__init__(board, strategy, seed)
|
||||
self.root = BayesianMctsNode(board, strategy, None, None, self.random_state)
|
||||
self.root.visits += 1
|
||||
|
||||
def sample(self, runs: int = 1000) -> None:
|
||||
for i in range(runs):
|
||||
#print(f"sample {i}")
|
||||
leaf_node = self.root.select().expand()
|
||||
_ = leaf_node.rollout()
|
||||
leaf_node.backpropagate()
|
||||
#self.root.print()
|
||||
|
||||
def apply_move(self, move: chess.Move) -> None:
|
||||
self.board.push(move)
|
||||
|
||||
# if a child node contains the move, set this child as new root
|
||||
for child in self.get_children():
|
||||
if child.move == move:
|
||||
self.root = child
|
||||
self.root.parent = None
|
||||
return
|
||||
|
||||
# if no child node contains the move, initialize a new tree.
|
||||
self.root = BayesianMctsNode(self.board, self.root.strategy, None, None, self.random_state)
|
||||
|
||||
def get_children(self) -> list[IMctsNode]:
|
||||
return self.root.children
|
||||
|
||||
def print(self):
|
||||
print("================================")
|
||||
self.root.print()
|
||||
Reference in New Issue
Block a user