Added basic bayes-mcts using beta distribution

This commit is contained in:
Theo Haslinger
2024-01-28 15:18:13 +01:00
parent c667a263a7
commit 2662dbf53a
10 changed files with 428 additions and 119 deletions

145
src/chesspp/baysian_mcts.py Normal file
View File

@@ -0,0 +1,145 @@
import chess
from src.chesspp.i_mcts import *
from src.chesspp.i_strategy import IStrategy
from src.chesspp.util_gaussian import gaussian_ucb1, max_gaussian, beta_std, beta_mean
from src.chesspp.eval import *
import numpy as np
import math
class BayesianMctsNode(IMctsNode):
def __init__(self, board: chess.Board, strategy: IStrategy, parent: Self | None, move: chess.Move | None,
random_state: random.Random, inherit_results: list[int] | None = None):
super().__init__(board, strategy, parent, move, random_state)
self.visits = 0
self.results = inherit_results.copy() if inherit_results is not None else [1, 1]
self._set_mu_sigma()
def _create_child(self, move: chess.Move):
copied_board = self.board.copy()
copied_board.push(move)
return BayesianMctsNode(copied_board, self.strategy, self, move, self.random_state, inherit_results=self.results)
def _set_mu_sigma(self):
alpha = self.results[0]
beta = self.results[1]
self.mu = beta_mean(alpha, beta)
self.sigma = beta_std(alpha, beta)
def _select_child(self) -> IMctsNode:
# select child by modified UCB1
if self.board.is_game_over():
return self
best_child = self.random_state.choice(self.children)
best_val = gaussian_ucb1(best_child.mu, best_child.sigma, self.visits)
for c in self.children:
g = gaussian_ucb1(c.mu, c.sigma, self.visits)
if g > best_val:
best_val = g
best_child = c
return best_child
def select(self) -> IMctsNode:
if len(self.children) == 0:
return self
else:
return self._select_child().select()
def expand(self) -> IMctsNode:
if self.visits == 0:
return self
for move in self.legal_moves:
self.children.append(self._create_child(move))
return self._select_child()
def rollout(self, rollout_depth: int = 20) -> int:
copied_board = self.board.copy()
steps = 1
for i in range(rollout_depth):
if copied_board.is_game_over():
break
m = self.strategy.pick_next_move(copied_board)
if m is None:
break
copied_board.push(m)
steps += 1
score = eval.score_manual(copied_board) // steps
if score > 0:
self.results[1] += 1
else:
self.results[0] += abs(score) // 50_000
return score
def backpropagate(self, score: int | None = None) -> None:
self.visits += 1
if score is not None:
self.results.append(score)
if len(self.children) == 0:
# leaf node
self._set_mu_sigma()
else:
# interior node
shuffled_children = self.random_state.sample(self.children, len(self.children))
max_mu = shuffled_children[0].mu
max_sigma = shuffled_children[0].sigma
for c in shuffled_children[1:]:
max_mu, max_sigma = max_gaussian(max_mu, max_sigma, c.mu, c.sigma)
if max_sigma == 0:
max_sigma = 0.001
self.mu = max_mu
self.sigma = max_sigma
if self.parent:
self.parent.backpropagate()
def print(self, indent=0):
print("\t"*indent + f"visits={self.visits}, mu={self.mu}, sigma={self.sigma}")
for c in self.children:
c.print(indent+1)
class BayesianMcts(IMcts):
def __init__(self, board: chess.Board, strategy: IStrategy, seed: int | None = None):
super().__init__(board, strategy, seed)
self.root = BayesianMctsNode(board, strategy, None, None, self.random_state)
self.root.visits += 1
def sample(self, runs: int = 1000) -> None:
for i in range(runs):
#print(f"sample {i}")
leaf_node = self.root.select().expand()
_ = leaf_node.rollout()
leaf_node.backpropagate()
#self.root.print()
def apply_move(self, move: chess.Move) -> None:
self.board.push(move)
# if a child node contains the move, set this child as new root
for child in self.get_children():
if child.move == move:
self.root = child
self.root.parent = None
return
# if no child node contains the move, initialize a new tree.
self.root = BayesianMctsNode(self.board, self.root.strategy, None, None, self.random_state)
def get_children(self) -> list[IMctsNode]:
return self.root.children
def print(self):
print("================================")
self.root.print()