Added min/max score metric to bays-mcts
This commit is contained in:
committed by
Theo Haslinger
parent
2662dbf53a
commit
0bc58fe9b7
13
main.py
13
main.py
@@ -31,12 +31,13 @@ def test_bayes_mcts():
|
||||
global lookup_count
|
||||
fools_mate = "rnbqkbnr/pppp1ppp/4p3/8/5PP1/8/PPPPP2P/RNBQKBNR b KQkq f3 0 2"
|
||||
board = chess.Board(fools_mate)
|
||||
seed = 1
|
||||
stategy = RandomStrategy(random.Random(seed))
|
||||
mcts = BayesianMcts(board, stategy, seed)
|
||||
seed = None
|
||||
strategy = RandomStrategy(random.Random(seed))
|
||||
mcts = BayesianMcts(board, strategy, chess.BLACK, seed)
|
||||
mcts.sample()
|
||||
for c in mcts.get_children():
|
||||
print("move (mcts):", c.move, " with score:", c.mu)
|
||||
mcts.print()
|
||||
for move, score in mcts.get_moves().items():
|
||||
print("move (mcts):", move, " with score:", score)
|
||||
|
||||
|
||||
def test_stockfish():
|
||||
@@ -96,7 +97,7 @@ def main():
|
||||
# test_mcts()
|
||||
# test_stockfish()
|
||||
# test_stockfish_prob()
|
||||
|
||||
test_bayes_mcts()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
@@ -1,53 +1,69 @@
|
||||
import chess
|
||||
from src.chesspp.i_mcts import *
|
||||
from src.chesspp.i_strategy import IStrategy
|
||||
from src.chesspp.util_gaussian import gaussian_ucb1, max_gaussian, beta_std, beta_mean
|
||||
from src.chesspp.eval import *
|
||||
from src.chesspp.util_gaussian import gaussian_ucb1, max_gaussian, min_gaussian
|
||||
from src.chesspp.eval import score_manual
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
|
||||
class BayesianMctsNode(IMctsNode):
|
||||
def __init__(self, board: chess.Board, strategy: IStrategy, parent: Self | None, move: chess.Move | None,
|
||||
random_state: random.Random, inherit_results: list[int] | None = None):
|
||||
def __init__(self, board: chess.Board, strategy: IStrategy, color: chess.Color, parent: Self | None, move: chess.Move | None,
|
||||
random_state: random.Random, inherit_result: int | None = None, depth: int = 0):
|
||||
super().__init__(board, strategy, parent, move, random_state)
|
||||
self.color = color # Color of the player whose turn it is
|
||||
self.visits = 0
|
||||
self.results = inherit_results.copy() if inherit_results is not None else [1, 1]
|
||||
|
||||
self.result = inherit_result if inherit_result is not None else 0
|
||||
self._set_mu_sigma()
|
||||
self.depth = depth
|
||||
|
||||
def _create_child(self, move: chess.Move):
|
||||
def _create_child(self, move: chess.Move) -> IMctsNode:
|
||||
copied_board = self.board.copy()
|
||||
copied_board.push(move)
|
||||
return BayesianMctsNode(copied_board, self.strategy, self, move, self.random_state, inherit_results=self.results)
|
||||
return BayesianMctsNode(copied_board, self.strategy, not self.color, self, move, self.random_state, self.result, self.depth+1)
|
||||
|
||||
def _set_mu_sigma(self):
|
||||
alpha = self.results[0]
|
||||
beta = self.results[1]
|
||||
def _set_mu_sigma(self) -> None:
|
||||
self.mu = self.result
|
||||
self.sigma = 1
|
||||
|
||||
self.mu = beta_mean(alpha, beta)
|
||||
self.sigma = beta_std(alpha, beta)
|
||||
def _is_new_ucb1_better(self, current, new) -> bool:
|
||||
if self.color == chess.WHITE:
|
||||
# maximize ucb1
|
||||
return new > current
|
||||
else:
|
||||
# minimize ubc1
|
||||
return new < current
|
||||
|
||||
def _select_best_child(self) -> IMctsNode:
|
||||
"""
|
||||
Returns the child with the *best* ucb1 score.
|
||||
It chooses the child with maximum ucb1 for WHITE, and with minimum ucb1 for BLACK.
|
||||
"""
|
||||
|
||||
def _select_child(self) -> IMctsNode:
|
||||
# select child by modified UCB1
|
||||
if self.board.is_game_over():
|
||||
return self
|
||||
|
||||
best_child = self.random_state.choice(self.children)
|
||||
best_val = gaussian_ucb1(best_child.mu, best_child.sigma, self.visits)
|
||||
for c in self.children:
|
||||
g = gaussian_ucb1(c.mu, c.sigma, self.visits)
|
||||
best_ucb1 = gaussian_ucb1(best_child.mu, best_child.sigma, self.visits)
|
||||
for child in self.children:
|
||||
# if child has no visits, prioritize this child.
|
||||
if child.visits == 0:
|
||||
best_child = child
|
||||
break
|
||||
|
||||
# save child if it has a *better* score, than our previous best child.
|
||||
ucb1 = gaussian_ucb1(child.mu, child.sigma, self.visits)
|
||||
if self._is_new_ucb1_better(best_ucb1, ucb1):
|
||||
best_ucb1 = ucb1
|
||||
best_child = child
|
||||
|
||||
if g > best_val:
|
||||
best_val = g
|
||||
best_child = c
|
||||
return best_child
|
||||
|
||||
def select(self) -> IMctsNode:
|
||||
if len(self.children) == 0:
|
||||
return self
|
||||
else:
|
||||
return self._select_child().select()
|
||||
return self._select_best_child().select()
|
||||
|
||||
def expand(self) -> IMctsNode:
|
||||
if self.visits == 0:
|
||||
@@ -56,11 +72,11 @@ class BayesianMctsNode(IMctsNode):
|
||||
for move in self.legal_moves:
|
||||
self.children.append(self._create_child(move))
|
||||
|
||||
return self._select_child()
|
||||
return self._select_best_child()
|
||||
|
||||
def rollout(self, rollout_depth: int = 20) -> int:
|
||||
copied_board = self.board.copy()
|
||||
steps = 1
|
||||
steps = self.depth
|
||||
for i in range(rollout_depth):
|
||||
if copied_board.is_game_over():
|
||||
break
|
||||
@@ -72,18 +88,21 @@ class BayesianMctsNode(IMctsNode):
|
||||
copied_board.push(m)
|
||||
steps += 1
|
||||
|
||||
score = eval.score_manual(copied_board) // steps
|
||||
if score > 0:
|
||||
self.results[1] += 1
|
||||
else:
|
||||
self.results[0] += abs(score) // 50_000
|
||||
score = score_manual(copied_board) // steps
|
||||
self.result = score
|
||||
return score
|
||||
|
||||
def _combine_gaussians(self, mu1: float, sigma1: float, mu2: float, sigma2: float) -> tuple[float, float]:
|
||||
if self.color == chess.WHITE:
|
||||
return max_gaussian(mu1, sigma1, mu2, sigma2)
|
||||
else:
|
||||
return min_gaussian(mu1, sigma1, mu2, sigma2)
|
||||
|
||||
def backpropagate(self, score: int | None = None) -> None:
|
||||
self.visits += 1
|
||||
|
||||
if score is not None:
|
||||
self.results.append(score)
|
||||
self.result = score
|
||||
|
||||
if len(self.children) == 0:
|
||||
# leaf node
|
||||
@@ -91,30 +110,32 @@ class BayesianMctsNode(IMctsNode):
|
||||
else:
|
||||
# interior node
|
||||
shuffled_children = self.random_state.sample(self.children, len(self.children))
|
||||
max_mu = shuffled_children[0].mu
|
||||
max_sigma = shuffled_children[0].sigma
|
||||
mu = shuffled_children[0].mu
|
||||
sigma = shuffled_children[0].sigma
|
||||
for c in shuffled_children[1:]:
|
||||
max_mu, max_sigma = max_gaussian(max_mu, max_sigma, c.mu, c.sigma)
|
||||
mu, sigma = self._combine_gaussians(mu, sigma, c.mu, c.sigma)
|
||||
|
||||
if max_sigma == 0:
|
||||
max_sigma = 0.001
|
||||
self.mu = max_mu
|
||||
self.sigma = max_sigma
|
||||
# if max_sigma == 0:
|
||||
# max_sigma = 0.001
|
||||
self.mu = mu
|
||||
self.sigma = sigma
|
||||
|
||||
if self.parent:
|
||||
self.parent.backpropagate()
|
||||
|
||||
def print(self, indent=0):
|
||||
print("\t"*indent + f"visits={self.visits}, mu={self.mu}, sigma={self.sigma}")
|
||||
print("\t"*indent + f"move={self.move}, visits={self.visits}, mu={self.mu}, sigma={self.sigma}")
|
||||
for c in self.children:
|
||||
c.print(indent+1)
|
||||
|
||||
|
||||
class BayesianMcts(IMcts):
|
||||
def __init__(self, board: chess.Board, strategy: IStrategy, seed: int | None = None):
|
||||
|
||||
def __init__(self, board: chess.Board, strategy: IStrategy, color: chess.Color, seed: int | None = None):
|
||||
super().__init__(board, strategy, seed)
|
||||
self.root = BayesianMctsNode(board, strategy, None, None, self.random_state)
|
||||
self.root = BayesianMctsNode(board, strategy, color,None, None, self.random_state)
|
||||
self.root.visits += 1
|
||||
self.color = color
|
||||
|
||||
def sample(self, runs: int = 1000) -> None:
|
||||
for i in range(runs):
|
||||
@@ -122,10 +143,10 @@ class BayesianMcts(IMcts):
|
||||
leaf_node = self.root.select().expand()
|
||||
_ = leaf_node.rollout()
|
||||
leaf_node.backpropagate()
|
||||
#self.root.print()
|
||||
|
||||
def apply_move(self, move: chess.Move) -> None:
|
||||
self.board.push(move)
|
||||
self.color = not self.color
|
||||
|
||||
# if a child node contains the move, set this child as new root
|
||||
for child in self.get_children():
|
||||
@@ -135,11 +156,17 @@ class BayesianMcts(IMcts):
|
||||
return
|
||||
|
||||
# if no child node contains the move, initialize a new tree.
|
||||
self.root = BayesianMctsNode(self.board, self.root.strategy, None, None, self.random_state)
|
||||
self.root = BayesianMctsNode(self.board, self.root.strategy, self.color, None, None, self.random_state)
|
||||
|
||||
def get_children(self) -> list[IMctsNode]:
|
||||
return self.root.children
|
||||
|
||||
def get_moves(self) -> Dict[chess.Move, int]:
|
||||
res = {}
|
||||
for c in self.root.children:
|
||||
res[c.move] = c.mu
|
||||
return res
|
||||
|
||||
def print(self):
|
||||
print("================================")
|
||||
self.root.print()
|
||||
@@ -140,14 +140,16 @@ def check_endgame(board: chess.Board) -> bool:
|
||||
|
||||
def score_manual(board: chess.Board) -> int:
|
||||
"""
|
||||
Calculate the score of the given board regarding the given color
|
||||
Calculate the score of a given board.
|
||||
Positive scores indicate an advantage for WHITE, negative scores indicate and advantage for BLACK.
|
||||
The range of scores is from approx. -1.100.000 to 1.100.000
|
||||
:param board: the chess board
|
||||
:return: score metric
|
||||
:return: score
|
||||
"""
|
||||
outcome = board.outcome()
|
||||
if outcome is not None:
|
||||
if outcome.termination == chess.Termination.CHECKMATE:
|
||||
return sys.maxsize if outcome.winner == chess.WHITE else -sys.maxsize
|
||||
return 1_100_000 if outcome.winner == chess.WHITE else -1_100_000
|
||||
else: # draw
|
||||
return 0
|
||||
|
||||
|
||||
@@ -10,11 +10,12 @@ CDF: dict[float, float] = {}
|
||||
lookup_count = 0
|
||||
|
||||
|
||||
def max_gaussian_numeric(mu1, sigma1, mu2, sigma2) -> (float, float):
|
||||
pass
|
||||
def get_lookup_count():
|
||||
global lookup_count
|
||||
return lookup_count
|
||||
|
||||
|
||||
def max_gaussian(mu1, sigma1, mu2, sigma2) -> (float, float):
|
||||
def max_gaussian(mu1, sigma1, mu2, sigma2) -> tuple[float, float]:
|
||||
global lookup_count
|
||||
global F1
|
||||
global F2
|
||||
@@ -26,9 +27,9 @@ def max_gaussian(mu1, sigma1, mu2, sigma2) -> (float, float):
|
||||
:param sigma1: sigma of the first Gaussian
|
||||
:param mu2: mu of the second Gaussian
|
||||
:param sigma2: sigma of the second Gaussian
|
||||
:return: mu and sigma maximized
|
||||
"""
|
||||
# we assume independence of the two gaussians
|
||||
try:
|
||||
#print(mu1, sigma1, mu2, sigma2)
|
||||
normal = dist.Normal(0, 1)
|
||||
sigma_m = math.sqrt(sigma1 ** 2 + sigma2 ** 2)
|
||||
@@ -59,13 +60,36 @@ def max_gaussian(mu1, sigma1, mu2, sigma2) -> (float, float):
|
||||
F2[alpha] = f2_alpha
|
||||
|
||||
mu = mu2 + sigma_m * f1_alpha
|
||||
#sigma_old = sigma2 ** 2 + (sigma1 ** 2 - sigma2 ** 2) * cdf_alpha + sigma_m ** 2 * f2_alpha
|
||||
sigma = math.sqrt((mu1**2 + sigma1**2) * cdf_alpha + (mu2**2 + sigma2**2) * (1 - cdf_alpha) + (mu1 + mu2) * sigma_m * pdf_alpha - mu**2)
|
||||
sigma = math.sqrt(sigma2 ** 2 + (sigma1 ** 2 - sigma2 ** 2) * cdf_alpha + sigma_m ** 2 * f2_alpha)
|
||||
#sigma = math.sqrt((mu1**2 + sigma1**2) * cdf_alpha + (mu2**2 + sigma2**2) * (1 - cdf_alpha) + (mu1 + mu2) * sigma_m * pdf_alpha - mu**2)
|
||||
|
||||
return mu, sigma
|
||||
|
||||
|
||||
def min_gaussian(mu1, sigma1, mu2, sigma2) -> tuple[float, float]:
|
||||
"""
|
||||
Returns the combined min gaussian of two Gaussians represented by mu1, sigma1, mu2, simga2
|
||||
:param mu1: mu of the first Gaussian
|
||||
:param sigma1: sigma of the first Gaussian
|
||||
:param mu2: mu of the second Gaussian
|
||||
:param sigma2: sigma of the second Gaussian
|
||||
:return: mu and sigma minimized
|
||||
"""
|
||||
try:
|
||||
normal = dist.Normal(0, 1)
|
||||
sigma_m = math.sqrt(sigma1 ** 2 + sigma2 ** 2)
|
||||
alpha = (mu1 - mu2) / sigma_m
|
||||
|
||||
cdf_alpha = normal.cdf(torch.tensor(alpha)).item()
|
||||
pdf_alpha = exp(normal.log_prob(torch.tensor(alpha))).item()
|
||||
pdf_alpha_neg = exp(normal.log_prob(torch.tensor(-alpha))).item()
|
||||
|
||||
mu = mu1 * (1 - cdf_alpha) + mu2 * cdf_alpha - pdf_alpha_neg * sigma_m
|
||||
sigma = math.sqrt((mu1**2 + sigma1**2) * (1 - cdf_alpha) + (mu2**2 + sigma2**2) * cdf_alpha - (mu1 + mu2) * sigma_m * pdf_alpha - mu**2)
|
||||
return mu, sigma
|
||||
except ValueError:
|
||||
print(mu1, sigma1, mu2, sigma2)
|
||||
exit(1)
|
||||
|
||||
|
||||
|
||||
def beta_mean(alpha, beta):
|
||||
|
||||
Reference in New Issue
Block a user